MATH 006 COLLEGE ALGEBRA I FINAL EXAM (SPRING 2006)

EXAM CONSISTS OF TWO PAGES TOTALLING 200 POINTS. SHOW YOUR WORK.

1) (18 pts) Simplify each expression; assuming $x \ge 0$ and y > 0:

(a)
$$4\sqrt{12} + 5\sqrt{27}$$
 (b) $\frac{\sqrt{2x}\sqrt{5xy^2}}{\sqrt{10y}}$ (c) $\frac{z+4}{3}$ $\frac{1}{4} + \frac{2}{z}$

2) (56 pts) Find all real solutions, if any, of each equation or inequality:

(a)
$$\frac{4-2x}{3} + \frac{1}{6} = 2x$$

(b) $x(1+x) = 6$
(c) $\sqrt{2x-1} = x-2$
(d) $3x^3 + 5x^2 - 3x - 5 = 0$
(e) $|1-2x| + 1 = 4$
(f) $|3x + 1| > 10$
(g) $-3 \le \frac{5-3x}{2} \le 6$
(h) $\frac{x+2}{x(x-5)} \le 0$

- 3) (10 pts) Two pumps of different sizes can empty a fuel tank in 5 hours. The larger pump can empty this tank in 4 hours less than the smaller. If the larger pump is out of order, how long will it take the smaller pump to the job alone?
- 4) (20 pts) Consider the pair of points P = (-2,2) and Q = (1,4).

(a) Find the distance between P and Q.

(b) Find the midpoint M of the line segment connecting P and Q.

(c) Find an equation of the line L_1 containing P and Q.

- (d) Find an equation of the line L_2 containing the midpoint M found in (b), which is perpendicular to line L_1 found in (c).
- (e) Find an equation of the line L_3 through the origin (0,0), which is parallel to the line L_1 found in part (c).
- 5) (14 pts) Consider the circle described by the equation $x^2 + y^2 + 4x 6y 3 = 0$

(a) Find its center and radius. (b) S

- (b) Sketch its graph.
- 6) (10 pts) The resistance (in ohms) of a circular conductor varies directly with the length of the conductor and inversely with the radius of the conductor. If 50 feet of conducting wire with a radius of 6×10^{-3} inch has a resistance of 10 ohms, what would be the resistance of 100 feet of the same wire if the radius is increased to 7×10^{-3} inch?

(over)

7) (12 pts) Find the following for the function f given by

$$f(x) = \frac{x^2}{x+1}$$
(b) $f(-2)$
(e) $f(x-2)$

(a) f(2)

(d) - f(x)

- (c) f(-x)(f) f(2x)
- 8) (10 pts) Sketch the graph of the piecewise defined function given by

$$g(x) = \begin{cases} x - 1 & -3 < x < 0 \\ -2x - 1 & x \ge 0 \end{cases}$$

- 9) (10 pts) A farmer with 2000 meters of fencing wants to use all of it to enclose a rectangular plot that borders a straight highway. If the farmer does not fence the side along the highway, what is the largest area that can be enclosed?
- 10) (10 pts) Find the domain of the rational function f, and the equations of its horizontal, vertical, or oblique asymptotes, if any; given

$$f(x) = \frac{x+2}{x^2-9}$$

- 11) (30 pts) Using the graph of the function g given below:
- (a) Find the domain and range of g.
- (b) Find g(-1).
- (c) List the intercepts.
- (d) For what value(s) of x does g(x) = -3?
- (e) Solve: g(x) > 0.
- (f) Determine the interval(s) on which g is increasing; on which g is decreasing; on which g is constant.
- (g) Sketch the graph of y = g(x 2).
- (h) Sketch the graph of y = g(x) + 2.
- (i) Sketch the graph of y = 2g(x).

