Math 007 Precalculus - Final exam

Each problem is worth 10 points. Show all work!

- 1. Given the function $f(x) = \frac{-2x}{4-x}$, (a) find its inverse, and (b) find the domain and range of f and f^{-1} .
- 2. Determine the domain of $f(x) = \ln(\frac{1}{x+2})$.
- 3. Use the rules for logarithms of products, quotients, and powers to write as the sum or difference of logarithms: $\log[\frac{x^2\sqrt{x+4}}{(x-1)^3}]$, where x > 1.
- 4. Solve for x: $\log_3 x \log_3 5 = 4$
- 5. Solve for x: $\pi^{2x+1} = e^{3-x}$
- 6. If \$5,000 is invested for 2 years at 8% per year, compounded quarterly, find the value of the investment at the end of the 2 years.
- 7. For a circle of radius 10 feet, find the arc length s subtended by a central angle of 80°.
- 8. An object is traveling around a circle with a radius of 2 meters. If in 5 seconds a central angle of 4 radians is swept out, what is the linear speed of the object?
- **9.** Determine the exact value of the trigonometric functions listed below.
 - (a) sin 120°
 - (b) tan 315°
 - (c) $\cos(-240^{\circ})$
- 10. Given $\sin \theta = \frac{12}{13}$, θ an acute angle, find the exact value of the six trigonometric functions of θ .

- 11. For the equation $y = -4\sin(3x)$, identify (a) the amplitude, and (b) the period.
- 12. Solve for x: $2^{5+2x} = \frac{1}{32}$.
- 13. Use the change-of-base formula to write $\log_7 15$ in terms of natural logarithms.
- 14. If $\cos \theta = \frac{3}{7}$ and θ terminates in the first quadrant, find the exact value of the following.
 - (a) $\sin(2\theta)$.
 - (b) $\cos(\frac{\theta}{2})$
- **15.** Establish the identity: $\frac{\csc \theta}{1-\cos \theta} = \frac{1+\cos \theta}{\sin^3 \theta}$.
- 16. Find the exact value of $\sin(\tan^{-1}(\frac{1}{3}))$.
- 17. Given the following triangle, find sides a and b, and $\angle C$.

- 18. Find the area of the triangle with $\angle A = 20^{\circ}$, b = 6 feet, and c = 10 feet.
- 19. Find the center and foci of the ellipse having the equation $4x^2 + 25y^2 16x 50y 59 = 0$, and then graph the ellipse.