Precalculus MATH 007
 Fall 2012 Final Exam Howard University
 Department of Mathematics
 4 December 2012

Instructions: This exam consists of 14 questions. Show all your work. No Work, No Credit. Number each problem solution on a separate page in the exam booklet. Use front and back. No more than two problems per page.

10 Points (1) Use the Laws of Logarithms to combine the expression $\log x+2 \log y-\log z$.

15 Points (2) Solve the logarithmic equation for the variable x.

$$
\log _{3}(x-4)+\log _{3}(x+4)=2
$$

20 Points (3) Solve the exponential equation for the variable x.

$$
e^{2 x}-3 e^{x}-10=0
$$

15 Points (4) Sketch a triangle that has an acute angle θ, and find the other five trigonometric ratios of θ, given $\tan \theta=\frac{1}{2}$.

NOTE: You may do either problem 5A or problem 5B.
20 Points (5A) Identify the domain, x and y intercepts, horizontal, vertical, and slant asymptotes (if any);

$$
\text { a) } r(x)=\frac{x^{3}+3 x^{2}}{x^{2}-4}, \quad \text { b) } s(x)=\frac{2 x-4}{x^{2}+x-2}
$$

20 Points (5B) Maximize the function $F(x, y)=3 x+5 y$ subject to the following constrictions:

$$
x \geq 0, \quad y \geq 0, \quad x+y \geq 2, \quad 2 x+3 y \leq 12, \quad 2 x+3 y \leq 12
$$

20 Points (6) Without the use of a calculator, find the exact value of the following;
(a) $\cos \left(75^{\circ}\right)$,
(b) $\tan ^{-1}\left(\tan \left(\frac{\pi}{4}\right)\right)$,
(c) $\sec \left(\frac{11 \pi}{4}\right)$,
(d) $\tan \left(\frac{5 \pi}{12}\right)$

15 Points (7) Given the trigonometric function below find; (a) the amplitude, period and phase shift. (b) Graph the function, showing one complete period.

$$
y=2 \sin \left(\frac{2}{3} x-\frac{\pi}{6}\right)
$$

In problems 8 and $9, A, B, C$ denote the angles of a triangle and a, b, c denote the sides opposite these angles, respectively.

10 Points (8) Give an example of a triangle, where one angle is given, that cannot be solved using only the Law of Sines. Use the Law of Sines to solve the triangle $a=12, b=20$, and $A=30^{\circ}$. You may use a calculator for this problem, but you must show all of your work.

15 Points (9) Solve the triangle with sides $a=8, b=10$, and $c=3$. You may use a calculator for this problem, but you must show all of your work.

10 Points (10) Show that:

$$
\sin \theta \tan \theta \sec \theta+1=\sec ^{2} \theta
$$

10 Points (11) Show that:

$$
(\cos \alpha \cos \beta-\sin \alpha \sin \beta)^{2}+(\sin \alpha \cos \beta+\cos \alpha \sin \beta)^{2}=1
$$

20 Points (12) A 600 ft . guy wire is attached to the top of a communications tower. If the wire makes an angle of 65° with the ground, how tall is the communications tower?

10 Points (13) The carrier wave for an FM radio signal is modeled by the function $y=a \sin \left(2 \pi\left(9.15 \times 10^{7}\right) t\right.$), where t is measured in seconds. Find the period and frequency of the carrier wave.

20 Points (14) Write the augmented matrix of this system. Then solve by using the Row-Echelon form.

$$
\left\{\begin{aligned}
5 x-2 y-4 z & =3 \\
3 x+3 y+2 z & =-3 \\
-2 x+5 y+3 z & =3
\end{aligned}\right.
$$

