- Calculus III Final Examination Fall 2010 Show all details to earn full credit Problems 1 through 11, 12 points each; problems 12 through 15, 17 points each
- 1. Find the angle between $\mathbf{u} = \langle -2, 0, 2 \rangle$ and $\mathbf{v} = \langle 1, 1, 0 \rangle$.
- 2. Let P = (1, -1, 1), Q = (1, 2, 1), and R = (-1, 0, 1). Find the area of the triangle with vertices P, Q, and R.
- 3. Find arc length of the parametric curve C given by $\langle t^3, t, \frac{\sqrt{6}}{2}t^2 \rangle, 1 \le t \le 3$.
- 4. Find an equation of the tangent plane to the graph of $z = x^2y + xy^3$ at the point (-1, 1, 0).
- 5. Locate all relative extrema and saddle points of the function $f(x,y) = x^3 + y^3 3xy$.
- 6. Let $f(x, y, z) = ye^{x+z} + ze^{y-x}$. At the point (2, 2, -2), find the unit vector pointing in the direction of most rapid increase of f.
- 7. Find a nonzero vector \mathbf{u} such that $\mathbf{u} \times \mathbf{u} = \mathbf{u}$. If not possible, explain.
- 8. Build up a triple integral representing the volume of the unit sphere $x^2 + y^2 + z^2 = 1$.
- 9. Find the distance between the parallel planes x + y + z = 1 and x + y + z = 3.
- 10. Find the directional derivative of $f(x,y) = e^{x^2y^2}$ at P = (1,-1) in the direction toward Q = (2,3).
- 11. Use Lagrange multipliers to minimize $f(x,y) = 3x^2 + y^2$ subject to xy = 1. (You may use methods in Calculus I.)
- 12. Compute $\int_0^2 \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} \frac{1}{\sqrt{x^2+y^2}} dx dy$. (Hint: convert to polar coordinates.)
- 13. Let C be the triangle with vertices (0,0),(1,0),(1,1) traversed in the counterclockwise direction. Evaluate $\int_C (\sin^3 x + 2y) \ dx + (x^2y + \cos^3 y) \ dy$. (Green's theorem is helpful.)
- 14. Compute the double integral $\iint_D e^{x/y} dA$, where $D = \{(x,y) | 1 \le y \le 2, y \le x \le y^3\}$
- 15. Among four functions and three equations defined below:

(A)
$$z = 3^{(x+y)} \tan(x+2y)$$
 (B) $z = \log_3(1+(x-y)^2)$, (C) $z = e^{-x} \sin y$ (D) $z = (\cos x) e^y$

(1)
$$\frac{\partial z}{\partial x} = \frac{\partial^2 z}{\partial y^2}$$
 (2) $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$ (3) $\frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial y^2}$

which satisfies equation (1)? which satisfies equation (2)?

which satisfies equation (3)? which satisfies none? (Show work to support your answers.)