Final Exam Math 159 Calculus III Spring 2006

Choose only 8 questions from #1 - #12 and only 7 questions from #13 - #21.

- [20 pts] 1. Find the maximum and minimum values of the radius of curvature ρ for the curve $x = \cos t$, $y = \sin t$, $z = \sin t$; $0 \le t < 2\pi$. (Note: $\rho(t) = 1/\kappa(t)$ where κ denotes the curvature.)
- $[20 \ pts]$ 2. Evaluate the double integral

$$\iint_{R} \sqrt{x^{2} + y^{2}} \, dA, \quad \text{where } R = \{ (x, y) : x^{2} + y^{2} \le 1 \}.$$

 $[20 \ pts]$ 3. Evaluate the double integral

$$\iint_{R} \frac{xy}{\sqrt{1+x^{2}+y^{2}}} \, dA, \quad \text{where } R = \{ (x,y) : 0 \le x \le 1, 0 \le y \le 1 \}.$$

[20 pts] 4. Find the surface area of the surface $z = 1 - x^2 - y^2$ with $1 - x^2 - y^2 \ge 0$.

[20 pts] 5. Evaluate the iterated integral
$$\int_0^{2\pi} \int_0^1 \int_0^{\sqrt{1-r^2}} zr \, dz \, dr \, d\theta$$
.

 $[20 \ pts]$ 6. Use the transformation u = x - 2y, v = 2x + y to find

$$\iint\limits_{R} \frac{x - 2y}{2x + y} \, dA,$$

where R is the rectangular region enclosed by the lines x - 2y = 1, x - 2y = 4, 2x + y = 1, 2x + y = 3.

- [20 pts] 7. Use Lagrange multipliers to find the maximum and the minimum values of f(x, y, z) = xyz subject to the condition $x^2 + y^2 + z^2 = 1$.
- [20 pts] 8. Find the local maxima, minima, and saddle points of $f(x, y) = e^{-(x^2+y^2+2x)}$.
- [20 pts] 9. Find the equation of the tangent plane of $z = \ln(\sqrt{x^2 + y^2})$ at (-1, 0, 0).
- [20 pts] 10. Find the unit tangent and unit normal vectors to the graph of the curve $\mathbf{r}(t) = \ln t \, \mathbf{i} + t \, \mathbf{j}$ at P(0, 1). Sketch the curve showing the point of tangency. (Be careful in drawing the direction of the unit tangent and the unit normal vectors.)

[20 pts] 11. Find the unit vector in the direction in which $f(x, y, z) = \tan^{-1}\left(\frac{x}{y+z}\right)$ increases most rapidly at (4, 2, 2). (Note: $\frac{d}{du}(\tan^{-1}u) = \frac{1}{1+u^2}$)

- [6 pts] 12. (a) Express the vector $\mathbf{v} = \langle -1, 4, 8 \rangle$ as the sum of two orthogonal vectors such that one of them is parallel to $\mathbf{b} = \langle 2, -2, -1 \rangle$. Use your decomposition to compute the distance from the point (-1, 4, 8) to the line determined by the vector \mathbf{b} .
- [6 pts] (b) Show that in 3-space the distance d from a point P to the line L that is passing through the points A and B can be given by the formula

$$d = \frac{\|\overrightarrow{AP} \times \overrightarrow{AB}\|}{\|\overrightarrow{AB}\|}$$

[6 pts] 13. Find the directional derivative of $f(s, y, z) = \sin(xyz)$ at $(1/2, 1/2, \pi)$ in the direction of $\langle 1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3} \rangle$.

[6 *pts*] 14. Find
$$f_x$$
 for $f(x, y) = \int_1^{xy} e^{t^2} dt$.

- $\begin{bmatrix} 6 \ pts \end{bmatrix}$ 15. (a) Find parametric equations of the directed line *segment* from the point P(2, 1, 3) to the point Q(1, 3, -2).
- [6 pts] (b) Use vectors to determine whether the points $P_1(3,1,3)$ $P_2(1,5,-1)$ and $P_3(4,-1,5)$ are collinear.
- [6 pts] 16. Let $\mathbf{r} = \langle x, y \rangle$, and fix two distinct points $\mathbf{r}_1 = \langle x_1, y_1 \rangle$ and $\mathbf{r}_2 = \langle x_2, y_2 \rangle$. Given a > 0 and $\|\mathbf{r}_2 - \mathbf{r}_1\| > a$, describe the set of all points (x, y) for which $\|\mathbf{r} - \mathbf{r}_2\| - \|\mathbf{r} - \mathbf{r}_1\| = a$. (Do not attempt to derive the equation in standard form algebraically.)
- [6 pts] 17. (a) Let A, B and C be three distinct noncollinear points in 3-space. Describe the set of points P that satisfy the vector equation $\overrightarrow{AP} \cdot (\overrightarrow{AB} \times \overrightarrow{AC}) = 0$.
- [6 pts] (b) Determine whether the points A(0,0,0), B(1,-1,1), C(2,1,-2) and D(-1,2,-1) are coplanar, (i.e., lie on the same plane).
- [6 pts] 18. Determine whether the line L_1 : x = 3 t, y = 5 + 3t, z = -1 4t, and the line L_2 : x = 8 + 2t, y = -6 4t, z = 5 + 2t have a point of intersection.
- [6 pts] 19. Find the parametric equations of the line through (2, 0, -3) that is parallel to the line of intersection of the planes x + 2y + 3z + 4 = 0 and x y z 5 = 0.
- [6 pts] 20. Find parametric equations for $\mathbf{r} = \langle 2 + \cos 3t, 3 \sin 3t, 4t \rangle$, $0 \le t \le \pi/4$, using arc length s as a parameter. Take the point on the curve where t = 0 as the reference point.
- [6 pts] 21. Find the work done by a force field $\mathbf{F}(x, y) = \langle x^3 y^3, xy^2 \rangle$ along the curve C parametrized by $x = t^2$, $y = t^3$, $-1 \le t \le 0$.