DIFFERENTIAL EQUATIONS: MATH 159 SPRING 2006 FINAL EXAMINATION MAXIMUM 200 POINTS

PART A: ANSWER ANY FIVE PROBLEMS. EACH PROBLEM IS WORTH 24 POINTS.

1. Solve initial value linear problem

$$t y' + 2 y = t^2 - t + 1, t > 0, y(1) = \frac{1}{2}$$

(Notation: y' = (d/dt)y)

2. Find the general solution of the differential equation

$$y' = \frac{y(t-y)}{t^2}, t > 0.$$

(Hint: Substitute y = u t and solve the resulting equation to get the solution.)

3. For the one-parameter family of differential equations

$$y' = y^2 - ay + 1$$

find the bifurcation value of the parameter a. Draw the phase lines corresponding to the bifurcation value of a and for values slightly less than and slightly greater than the bifurcation value of a.

4. Find the general solution of the linear system

$$x' = x - 3y$$

$$y' = x + 5y$$

Sketch the phase portrait.

5. Find the solution of the initial value problem

$$x' = 3x + 4y$$

$$y' = -2 x - y$$

$$x(0) = 1, y(0) = 0$$

Sketch the phase portrait showing this solution.

6. Find the general solution of the system

$$x' = -2 x - y$$

$$y' = x - 4 y$$

Sketch the phase portrait.

7, Solve the initial value problem

$$y'' + 2y' + 2y = e^{2t}, y(0) = 0, y'(0) = 0$$

by the method of undetermined coefficients or by the method of Laplace trasforms.

PART B: ANSWER ANY TWO PROBLEMS. EACH PROBLEM IS WORTH 40 POINTS.

8 (a) Compute the solution of

$$y'' + 4y' + 20y = -3\sin(2t), y(0) = 0, y'(0) = 0$$

- (b) Compute the amplitude and phase angle of the forced oscillations.
- 9 (a) Solve the initial value problem

$$y'' + y = 0.5 \cos(0.8 t), y(0) = 0, y'(0) = 0$$

- (b) Determine the frequency of the beats and the frequency of the rapid oscillations.
- (c) Draw the solution curve and the amplitude modulation curve.

where

10. Solve the initial value problem

$$y'' + 3 y = g(t), y(0) = 2, y'(0) = 0,$$

$$g(t) = \begin{cases} t & \text{if } 0 \le t < 1 \\ 1 & \text{if } t \ge 1 \end{cases}$$

11 (a) Find the Laplace inverse of

$$g(s) = \frac{1}{(s-1)(s^2+4)}$$

(b)Use Laplace transform to solve the initial value problem

$$y'' + 4y = 2\cos(3t), y(0) = 1, y'(0) = 0.$$