Howard University Department of Mathematics

Fall 2012 Semester Saturday, October 27th, 2012. Senior Comprehensive Mathematics Exam

Name: (Please PRINT your name) Signature: Email address: D. # Tel #:	Ethnicity: (Please circle one)	
(Please PRINT	'your name)	B Black W White H Hispanic N Native American Indian / Alaskan
Signature:		Native American Indian / Alaskan Native A Asian / Pacific Islander
Email address:		Gender: M/F
I.D. #	Tel #:	
Address:		

- Show all work otherwise NO POINTS WILL BE AWARDED.
- All work must be neat and legible OTHERWISE POINTS WILL NOT BE AWARDED.
- Partial credits will be given for work which demonstrates a working knowledge of the concepts.
- Answer all questions. Each question is worth 10 points.
- Use the blue book provided for you answers.

Do not write in the columns below.

Question 1	Question 7	
Question 2	Question 8	
Question 3	Question 9	
Question 4	Question 10	
Question 5	Exam Total	
Question 6	Exam Grade (Pass or Fail)	

Q1)

- (a) Use implicit differentiation to find $\frac{dy}{dx}$ for $x^2 + y^3 2y = 3$. Then find the equation of the tangent line to the curve at (2,1).
- (b) If $y = \int_{-\infty}^{x^2} \cos t dt$, find dy/dx.
- (c) Find $\lim_{x\to 0} \frac{1-\cos x}{x^2}$.
- Q2) Find the following antiderivatives:
- (i) $\int x\sqrt{(2-x)}dx$
- (ii) $\int t^2 \sin t dt$
- (iii) $\int \sin^3 x \cos^4 x dx$

Q3)

- (a) State the Mean Value Theorem.
- (b) Find a value of c satisfying the conclusion of the Mean Value Theorem for $f(x) = x^3 x^2 x + 1$ on the interval [0, 2]
- (c) Give an example of a function which is continuous at a value x but is not differentiable at x.

Q4)

- (a) Define what is meant for a sequence of functions $\{f_n\}$ to converge uniformly on an interval [a,b] to a function f.
- (b) Show that the sequence of functions $\{f_n\}$ where $f_n(x) = x^n$ is uniformly convergent on [0, k] where k < 1.
- (c) From part (b) above, what conclusion can you deduce if the interval under consideration is [0, 1].
- Q5) Determine if the following series converges or diverges:

(a)
$$\sum_{1}^{\infty} \frac{(2n)!}{n! n!}$$

(b)
$$\sum_{1}^{\infty} \frac{1}{n^3 + 5n + 3}$$

(a)
$$\sum_{1}^{\infty} \frac{(2n)!}{n! \, n!}$$
 (b) $\sum_{1}^{\infty} \frac{1}{n^3 + 5n + 3}$ (c) $\sum_{1}^{\infty} (-1)^n \, n^2 \left(\frac{2}{3}\right)^n$

- Q6) Find the eigenvalues and corresponding eigenvectors for: $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$.
- Q7) Find the algebraic expression for the null space and range for the matrix $A = \begin{bmatrix} -1 & 3 \\ 2 & -6 \end{bmatrix}$.
- Q8) Evaluate the double integral: $\iint_R xydA$ where R is the standard region bounded by the lines and curves: $x = 0, x = 1, y = x^2$, and y = 1 + x.
- Q9) Find the radius and interval of convergence for: $\sum_{n=1}^{\infty} \left(\frac{n+1}{2^n} \right) x^n.$

Q10)

- (a) Define what it means to say a sequence $\{a_n\}$ is convergent to L.
- (b) Define what it means to say a sequence $\{a_n\}$ is bounded.
- (c) Prove or disprove: Every convergent sequence is bounded
- (d) Prove or disprove: Every bounded sequence is convergent.