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o Show all work otherwise NO POINTS WILL BE AWARDED.
e All work must be neat and legible OTHERWISE POINTS WILL NOT BE AWARDED.

o Partial credits will be given for work which demonstrates a working knowledge of the

concepts.
o Answer all questions. Each question is worth 10 points.

e Use the blue book provided for you answers.

Do not write in the columns below.
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Question 2 Question 8
Question 3 Question 9
Question 4 Question 10
Question 5 Exam Toftal
Question 6 Exam Grade (Pass or Fail)




Q1)

(a) Use implicit differentiation to find % for x> +y° =2y =3. Then find the equation of the tangent line to
the curve at‘(2,1).
() If y= [costdt , find dy/dx.
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() Find lim

Q2) Find the following antiderivatives:
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Q3)
(a) State the Mean Value Theorem.

(b) Find a value of ¢ satisfying the conclusion of the Mean Value Theorem for f(x)=x>—x*>—x+1 onthe
interval [0 , 2]

(c) Give an example of a function which is continuous at a value x but is not differentiable at x.

Q4)

(a) Define what is meant for a sequence of functions {f.} to converge uniformly on an interval [a , b] to a
function f. ,

(b) Show that the sequence of functions ! £.} where f,(x)=x"is uniformly convergent on [0, k] where k<1.

(c) From part (b) above, what conclusion can you deduce if the interval under consideration is [0, 1].

Q5) Determine if the following series converges or diverges:
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1 2
Q6) Find the eigenvalues and corresponding eigenvectors for: 4 = L 3} .

-1 3
Q7) Find the algebraic expression for the null space and range for the matrix 4 = { 5 6} :

Q8) Evaluate the double integral: ” xydA where R is the standard region bounded by the lines and curves:
R

x=0,x=Ly=x",and y=1+x.

- Q9) Find the radius and interval of convergence for: Z(n; 1}:" .
n=l '

Q10)

(a) Define what it means to say a sequence {an} is convergent to L.
(b) Define what it means to say a sequence {an} is bounded.

(c) Prove or disprove: Every convergent sequence is bounded

(d) Prove or disprove: Every bounded sequence is convergent.



