Math 157

Calculus II

Final Exam

SHOW ALL WORK. Justify your answers! Simplify your answers.

Show details to earn full points. Give exact answers whenever possible.

Each of the 15 problems = 20 pts. Solve any 10 problems below. Exam total = 200 pts.

- 1. (a) Find the area of the region enclosed by the curves $y = 1 2x^2$ and $y = 4x^2 1$.
 - (b) Find the average value f_{ave} of the function $f(x) = \ln x$ on the interval [1, e].
- 2. (a) Find volume of rotating region bounded by $y = x^5$, y = x, x = 0, x = 1, about the x-axis.
 - (b) Find the resulting volume when the region between $y = e^{-x^2}$ and y = 0 and to the right of x = 0 is rotated about the y-axis.
- 3. A circular swimming pool has a diameter of 12 ft, the sides are 3 ft high, and the water is 2 ft deep. Given that water weighs $62.5 \, \text{lb/ft}^3$, do the following.
 - (a) Express the work needed to pump all of the water over the side as a limit of a Riemann sum.
 - (b) Evaluate the limit in part (a) by expressing it as an integral.
- 4. Evaluate the following integrals:

(a)
$$\int_0^{\pi} (\sin x)^5 (\cos x)^7 dx$$

(b) $\int_0^1 e^{\sqrt{x}} dx$ (*Hint:* Let $x = t^2$.)
(c) $\int_2^{\infty} x^2 e^{-2x} dx$
(d) $\int_{-2}^2 \frac{1}{\sqrt{2-x}} dx$

5. Evaluate the following integrals:

(a)
$$\int (\sec x)^{3/2} \tan x \, dx$$

(b) $\int \frac{5}{(x+1)(x^2+4)} \, dx$
(c) $\int \frac{dx}{x^2+2x+5}$
(d) $\int \frac{x+2}{\sqrt{x^2+2x-3}} \, dx$

6. Determine if the following series are absolutely convergent, conditionally convergent or divergent:

(a)
$$\sum_{n=1}^{\infty} \arctan(n^2 + 1)$$

(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1}$
(c) $\sum_{n=1}^{\infty} \frac{n \cos \sqrt{n}}{n^4 + 1}$
(d) $\sum_{n=2}^{\infty} \frac{1}{n(\ln(n))^4}$

7. Find the sum of the following infinite series.

(a)
$$\sum_{n=2}^{\infty} \frac{2}{n^2 - 1}$$
 (*Hint:* Use partial fractions.)

(b)
$$\sum_{n=1}^{\infty} \frac{3^n - 2^n}{4^n}$$

(continued on reverse side)

8. Determine if each of the following sequences (a_n) converges, and if so, compute its limit:

(a)
$$a_n = \frac{\sin n}{n}$$
, $n \ge 1$.
(b) $a_n = \left(\frac{n+1}{n}\right)^{4n}$, $n \ge 1$.

9. Find the radius of convergence and the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{(4x-1)^n}{n \cdot 3^n}$.

Note: Be sure to check convergence/divergence at the boundary points.

- 10. The interval [1,3] is partitioned into n subintervals $[x_{k-1}, x_k]$ for k = 1, ..., n, of width $\Delta x = x_k x_{k-1}$. For each k = 1, ..., n, choose any x_k^* such that $x_{k-1} \leq x_k^* \leq x_k$. Let the function f be continuous on [1,3]. Do the following.
 - (a) State the limit definition of $\int_{1}^{3} f(x) dx$.
 - (b) If n = 4, write the midpoint approximation for the integral in part (a) in terms of f.
- 11. (a) Find the length of the curve $y = \ln(\cos x)$ on the interval $0 \le x \le \pi/3$.
 - (b) Find the area of the surface obtained by rotating the arc of the parabola $y = x^2$ between points (2, 4) and (3, 9) about the y-axis.
- 12. How many initial terms of the Maclaurin series for $\sin x$ are required to approximate $\sin 1$ correct to four decimal places? Justify your answer. Find the above approximation.
- 13. Find the centroid of the region in the first quadrant between the line x+y=1 and the circle $x^2+y^2=1$.
- 14. (a) Find the slope of the tangent line to $r = 2(1 + \sin \theta)$ at $\theta = \frac{\pi}{4}$
 - (b) Find the area bounded by the curve $r = 2\sqrt{2}(1 + \sin \theta)$ in polar coordinates.
- 15. (a) Convert $(x^2 + y^2)^{5/2} = 3(x^2 y^2)$ into polar coordinates.
 - (b) Convert $r = 6 \cos \theta + 8 \sin \theta$ into Cartesian coordinates. What curve in the plane does this equation represent?