Calculus I Final Exam

April 27, 2021
Howard University Mathematics Department
MUST GIVE STEP BY STEP EXPLANATIONS TO GET CREDIT FOR ANSWERS. No calculators or electronic devices are permitted.

PART I

Do ALL 3 problems. EACH WORTH 16 POINTS.

1. Consider the function $f(x)=\cos (x)+\sin (x)$.
(a) Determine the critical number(s) of $f(x)$ on the interval $[0,2 \pi]$. Note: $\tan x=1$ only at $\frac{\pi}{4}, \frac{5 \pi}{4}$ in $[0,2 \pi]$.
(b) What is the global maximum of $f(x)$ on the interval [$0,2 \pi]$? What is the global minimum of $f(x)$ on this same interval?
You can use $\sin (\pi / 4)=\cos (\pi / 4)=\sqrt{2} / 2, \sin (5 \pi / 4)=\cos (5 \pi / 4)=-\sqrt{2} / 2$.
2. Compute the derivative of the following functions using appropriate derivative rules:
(a) $f(x)=x^{3} \ln (x)$.
(b) $g(x)=\cos \left(x^{3}-1\right)+2^{3 x}$.
3. The function $f(x)$ has domain $[-3,5]$. The graph below represents $f^{\prime}(x)$.
(a) Where is $f(x)$ increasing and where is it decreasing?
(b) Where is $f(x)$ concave up and where is it concave down?
[HINT: When graph is concave up what happens to $f^{\prime}(x)$? What happens when it is concave down ?]
(c) Sketch a possible graph of $f(x)$.

NOTE: THIS IS GRAPH OF DERIVATIVE $f^{\prime}(x)$, NOT $f(x)$

PART II

Choose any 8 problems. EACH WORTH 16 POINTS.

1. (a) Find the domain of $f(x)=\sqrt{4 x^{2}-x}+2 x$ and express your answer in interval notation.
(b) Find the inverse function $f^{-1}(x)$ of $f(x)=\ln (x-1)$ and check that $f^{-1} \circ f(x)=$ x.
2. Given

$$
f(x)= \begin{cases}\frac{\sqrt{2 x+3}-3}{x-3} & \text { if } x>3 \\ \frac{10}{x^{2}+21} & \text { if } x \leq 3\end{cases}
$$

Show that $f(x)$ is continuous on the interval $(-\infty, \infty)$.
3. The population of a town after t years is given by $P(t)=\frac{1200}{1+e^{-0.1 t}}$. Find the rate of change of this population after t years. Is it always increasing or decreasing? What happens to the population as t approaches ∞ ?
4. Show that $2 x-\sin x$ can have at the most one real number as zero (i.e, x-intercept) in any interval $[a, b]$ using Rolle's theorem. State the conditions for Rolle's theorem and how they are satisfied here.
5. Differentiate $y=\frac{(x-2)^{3}}{\sqrt{x^{2}+1}}$ and $y=x^{x-1}$ using logarithmic differentiation.
6. Use implicit differentiation to find the equation of the tangent line to the ellipse $\frac{x^{2}}{2}+\frac{y^{2}}{8}=1$ at $(1,2)$.
7. Find the linearization (linear approximation) $L(x)$ of $f(x)=e^{x}$ at $a=0$ and use it to approximate $e^{0.1}$.
8. Evaluate the following limits, or show that they do not exist.
(a) $\lim _{x \rightarrow 0} \frac{x^{3}+x^{2}}{\cos (2 x)-1}$
(b) $\lim _{x \rightarrow \infty}\left(x+x^{2}\right)^{1 / x}$
9. You are building a toolbox that is to have a square base and an open top. The total volume of the box shall be 2 cubic meters. The materials used for the base cost $\$ 3$ per square meter, and the materials for the sides cost $\$ 6$ per square meter. Determine the minimum cost of production for the toolbox.
10. Solve for y using integration by substitution: $y=\int e^{\cos x} \sin x d x$.
11. Evaluate the following integrals (Calculate as much as you can):

$$
\text { (a) } \int_{0}^{1} \sqrt{t}-t^{2} d t \quad \text { (b) } \int_{1}^{2} \frac{e^{2}}{x^{3}} d x
$$

12. Find the Riemann sum approximation for $\int_{0}^{3} \frac{1}{1+x^{2}}, d x$ using 3 intervals and left endpoints. Then do the same using 3 intervals and right endpoints. Find the actual value of this integral, given that $\tan ^{-1}(3)=1.25$. How does the approximation compare to the actual value? What about the average of the two Riemann sum approximations?
