Calculus I Final Exam April 27, 2021 Howard University Mathematics Department

MUST GIVE STEP BY STEP EXPLANATIONS TO GET CREDIT FOR ANSWERS. No calculators or electronic devices are permitted.

PART I

Do ALL 3 problems. EACH WORTH 16 POINTS.

- 1. Consider the function $f(x) = \cos(x) + \sin(x)$.
 - (a) Determine the critical number(s) of f(x) on the interval $[0, 2\pi]$. Note: $\tan x = 1$ only at $\frac{\pi}{4}, \frac{5\pi}{4}$ in $[0, 2\pi]$.
 - (b) What is the global maximum of f(x) on the interval [0, 2π]? What is the global minimum of f(x) on this same interval?
 You can use sin(π/4) = cos(π/4) = √2/2, sin(5π/4) = cos(5π/4) = -√2/2.
- 2. Compute the derivative of the following functions using appropriate derivative rules:
 - (a) $f(x) = x^3 \ln(x)$.
 - (b) $g(x) = \cos(x^3 1) + 2^{3x}$.
- 3. The function f(x) has domain [-3, 5]. The graph below represents f'(x).
 - (a) Where is f(x) increasing and where is it decreasing?
 - (b) Where is f(x) concave up and where is it concave down?
 [HINT: When graph is concave up what happens to f'(x)? What happens when it is concave down?]
 - (c) Sketch a possible graph of f(x).

NOTE: THIS IS GRAPH OF DERIVATIVE f'(x), NOT f(x)

PART II

Choose any 8 problems. EACH WORTH 16 POINTS.

- 1. (a) Find the domain of $f(x) = \sqrt{4x^2 x} + 2x$ and express your answer in interval notation.
 - (b) Find the inverse function $f^{-1}(x)$ of $f(x) = \ln(x-1)$ and check that $f^{-1} \circ f(x) = x$.
- 2. Given

$$f(x) = \begin{cases} \frac{\sqrt{2x+3}-3}{x-3} & \text{if } x > 3\\ \frac{10}{x^2+21} & \text{if } x \le 3 \end{cases}$$

Show that f(x) is continuous on the interval $(-\infty, \infty)$.

- 3. The population of a town after t years is given by $P(t) = \frac{1200}{1 + e^{-0.1t}}$. Find the rate of change of this population after t years. Is it always increasing or decreasing? What happens to the population as t approaches ∞ ?
- 4. Show that $2x \sin x$ can have at the most one real number as zero (i.e, x-intercept) in any interval [a, b] using Rolle's theorem. State the conditions for Rolle's theorem and how they are satisfied here.
- 5. Differentiate $y = \frac{(x-2)^3}{\sqrt{x^2+1}}$ and $y = x^{x-1}$ using logarithmic differentiation.
- 6. Use implicit differentiation to find the equation of the tangent line to the ellipse $\frac{x^2}{2} + \frac{y^2}{8} = 1$ at (1,2).
- 7. Find the linearization (linear approximation) L(x) of $f(x) = e^x$ at a = 0 and use it to approximate $e^{0.1}$.
- 8. Evaluate the following limits, or show that they do not exist.

(a)
$$\lim_{x \to 0} \frac{x^3 + x^2}{\cos(2x) - 1}$$

(b) $\lim_{x \to \infty} (x + x^2)^{1/x}$

- 9. You are building a toolbox that is to have a square base and an open top. The total volume of the box shall be 2 cubic meters. The materials used for the base cost \$3 per square meter, and the materials for the sides cost \$6 per square meter. Determine the minimum cost of production for the toolbox.
- 10. Solve for y using integration by substitution: $y = \int e^{\cos x} \sin x \, dx$.

11. Evaluate the following integrals (Calculate as much as you can):

(a)
$$\int_0^1 \sqrt{t} - t^2 dt$$
 (b) $\int_1^2 \frac{e^2}{x^3} dx$

12. Find the Riemann sum approximation for $\int_0^3 \frac{1}{1+x^2}$, dx using 3 intervals and left endpoints. Then do the same using 3 intervals and right endpoints. Find the actual value of this integral, given that $tan^{-1}(3) = 1.25$. How does the approximation compare to the actual value? What about the average of the two Riemann sum approximations?