Calculus I Final Exam - Offline (in-person) - Version May 2, 2023 Howard University Mathematics Department

MUST GIVE STEP BY STEP EXPLANATIONS TO GET CREDIT FOR ANSWERS. No calculators or electronic devices are permitted.

PART I

Do all three problems. EACH WORTH 24 POINTS.

- 1. Given the function $f(x) = 4 9x 3x^2 + x^3$.
 - (a) Find the intervals of increase or decrease.
 - (b) Find the local extreme values.
 - (c) Find the intervals of concavity and the inflection points.
 - (d) Using the information from (a) to (c) along with its behavior at $\pm \infty$, graph the function f.
- 2. Find the derivative of the function f(x) using the definition of derivative (LIMIT FORMULA).

$$f(x) = 3x^2 - 4$$

- 3. Given the function $f(x) = 3x x^2$ defined on [0, 1] which is partitioned into n subintervals.
 - (a) Find the Riemann sum approximation for f(x) over the interval [0, 1] by taking right end points.
 - (b) Find the area of the region bounded by the graph of f(x), the x-axis and the vertical lines x = 0 and x = 1 using Riemann Sum approximation.
 - (c) Use Fundamental Theorem of Calculus to verify your solution obtained in part (b).

PART II

Choose any 8 problems. EACH WORTH 16 POINTS.

1. Let f be a function defined as follows:

$$f(x) = \begin{cases} 3x - 4, & \text{if } x < 2\\ 4, & \text{if } x = 2\\ x, & \text{if } x > 2 \end{cases}$$

- (a) Find $\lim_{x \to 2^-} f(x)$.
- (b) Find $\lim_{x \to 1} f(x)$.
- (c) Find $\lim_{x\to 2} f(x)$ if it exists. If it does not exist, explain the reason.

(d) Is f continuous at x = 2? Explain the reason to your answer.

- 2. Find an equation of the line tangent to $y = \frac{x+1}{e^{x^2}+1}$ at $(0, \frac{1}{2})$.
- 3. Find the horizontal and vertical asymptotes of th curve $f(x) = \frac{4x^2 + 3x + 11}{x^2 2x 8}$ (use limit concept).
- 4. Find the values of c as a conclusion of the Mean Value Theorem for the function $f(x) = 6x x^2 7$ defined on [2,3].
- 5. Determine the possible x-coordinates at which the curve $y^3 + 2y^2 y^5 = 6x^4 4x^3 6x^2$ could have horizontal tangent lines.
- 6. Use logarithmic differentiation to find y', where $y = x^{\cos(x)}$.
- 7. Find the linearization (linear approximation) L(x) of $f(x) = \ln(x^2)$ at a = 1 and use it to approximate $\ln((1.2)^2)$.
- 8. A table of values for f, g, f', and g' is given.

x	f(x)	g(x)	f'(x)	g'(x)
1	3	3	4	6
2	1	8	5	7
3	7	2	7	9

- (a) If h(x) = g(f(x)). Find h'(1)
- (b) If p(x) = f(x)g(x). Find p'(2)
- (c) If q(x) = f(x)/g(x). Find q'(3).
- 9. Identify the type of indeterminate forms and evaluate the following limits:

(a)
$$\lim_{x \to 0} \left[\frac{\sin x - x}{x^3} \right]$$
 (b) $\lim_{x \to 1^+} (x)^{1/(x-1)}$

- 10. The length l of a rectangle is decreasing at the rate of $1 \ cm/sec$ while the width w is increasing at the rate of $1 \ cm/s$. When $l = 12 \ cm$ and $w = 5 \ cm$, find
 - (a) the rate of change of the area and the length of the diagonals of the rectangle. Also, interpret the rate of change in both the cases.
 - (b) the dimensions l and w with perimeter 100 m whose area is as large as possible.

11. If
$$y(x) = \int_{x}^{0} \cos(2t)dt$$
, evaluate $\frac{dy}{dx}$. Also, evaluate $y\left(\frac{\pi}{2}\right)$.

12. Evaluate the following integrals using appropriate method:

(a)
$$\int_{1}^{4} \frac{\sqrt{t}+t}{t} dt$$
 (b) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (2t+\cos t) dt$ (c) $\int 4x^2 \sqrt[3]{1-x^3} dx$