Please provide step by step solutions with explanations for each step. Total 200 points; Time limit 2 hrs.

Part I: 15 points each, do all the problems

Calculus 3

- 1. Determine whether the line whose equation is given by $\mathbf{r}(t) = \mathbf{i} + t(2\mathbf{i} + \mathbf{k})$ is parallel or perpendicular or neither to the plane given by x + 3y 2z = 5.
- 2. A particle is travelling along a curve whose parametric equation is given by $(1+3t^2)\mathbf{i}+4t^2\mathbf{j}+2\mathbf{k}$ where t is time in seconds. Find the distance travelled (arc-length) from t=0 to t=2, and the velocity and speed at t=2 seconds.
 - 3. Find all first and second partial derivatives of $x^3y^2 2\cos(xy)$.
 - 4. Find all relative extrema and saddle points of $f(x,y) = x^3 + 3xy + 6y$.
- 5. From the equation $xe^z + yz = x^2$ that determines z as a function of x and y implicitly, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ using implicit differentiation.
- 6. Find the equation of the tangent plane and normal line to the surface $z = 2xy y^2$ at the point (1,2,0).
 - 7. Evaluate $\int_0^4 \int_{\sqrt{x}}^2 \sin(\pi y^3) dy dx$ by first changing the order of integration.

8.

Evaluate
$$\int_0^1 \int_{1+x}^{2x} \int_z^{x+z} x \ dy dz dx$$

- 9. Find the area of the portion of the surface z = xy inside the cylinder $x^2 + y^2 = 1$.
- 10. Use the transformation u = x/3, v = y/4 to evaluate the area inside the ellipse $\frac{x^2}{9} + \frac{y^2}{16} = 1$ by integrating over the disk $u^2 + v^2 \le 1$.

Part II. Answer any two. Each carries 25 points

1. (a) (15 points) Find the work done by the force \mathbf{F} given by $\mathbf{F}(x,y) = y^2\mathbf{i} - 2x^2\mathbf{j}$ acting on a particle that moves along the circle $x = \cos t, y = \sin t$ from (1,0) to (0,1). [You may use: $\int_0^{\pi/2} \cos^3 t = \int_0^{\pi/2} \sin^3 t = 2/3$.]

(b) (10 points) Find the divergence and the curl of the vector field F given by

 $\mathbf{F}(x, y, z) = \cos x \mathbf{i} + \sin x \mathbf{j} + \ln(xy) \mathbf{k}.$

- 2. Find the volume of the solid enclosed by the cylinder $x^2 + y^2 = 4$ and the surface $z^2 x^2 y^2 = 4$.
- 3. Find the point on the plane x+3y+z=1 within the first octant $(x \ge 0, y \ge 0, z \ge 0)$ that is closest to the origin.
- 4. Suppose a particle is moving with constant velocity. i.e, $\mathbf{r}'(t) = \mathbf{c}$ for some fixed vector \mathbf{c} . Let the magnitude of $\mathbf{c} = c$. Show that $\frac{d^2}{dt^2} \left(||\mathbf{r}(t)||^2 \right) = \frac{d^2}{dt^2} \left(\mathbf{r}(t) \cdot \mathbf{r}(t) \right) = 2c^2$ and $\frac{d}{dt} \left(\mathbf{r}(t) \times \mathbf{r}'(t) \right) = 0$.