## Final Examination Spring 2007 Math-158 Calculus 3

Answer 10 questions. Each question is worth 20 points.

1. Find a rotation that eliminates the xy-term from the equation

$$x^2 - xy + y^2 = 2.$$

Rewrite the equation in terms of the new coordinate system and sketch the curve displaying both coordinate systems.

2. The position of a particle at time t is given by

$$\overrightarrow{r}(t) = e^{-t} \overrightarrow{i} + \cos t \overrightarrow{j} + \sin t \overrightarrow{k}.$$

- (a) Show that the speed of the particle at time t is  $\sqrt{e^{-2t}} + 1$ .
- (b) Find the acceleration vector at time t.
- (c) Show that the curvature k(t) is given by  $k(t) = \sqrt{\frac{1+2e^{-2t}}{(1+e^{-2t})^3}}$ .
- (a) Find parametric equations for the line of intersection of the planes x + 2y - 3z + 5 = 0 and -2x + 3y + 7z + 2 = 0.
  - (b) Find an equation for a sphere with center (0, 1, 5) and which is tangential to the plane 3x + 6y - 2z - 5 = 0.
- 4. Let

$$f(x,y,z) = \frac{xyz}{x^2 + y^4 + z^4}$$

- (a) Show that as  $(x, y, z) \rightarrow (0, 0, 0)$  along the curve x = at, y = bt, z = ct,  $f(x,y,z)\to 0.$
- (b) Find  $\lim_{\substack{(x,y,z)\to(0,0,0)\\(x,y,z)\to(0,0,0)}} f(x,y,z)$  as  $(x,y,z)\to(0,0,0)$  along the curve  $x=t^2,\ y=t,\ z=t.$ (c) Does  $\lim_{\substack{(x,y,z)\to(0,0,0)\\(x,y,z)\to(0,0,0)}} f(x,y,z)$  exist? Justify your answer.
- 5. Let  $f(x,y,z) = x^3z^2 + y^2z + z + 1$  and  $\overrightarrow{a} = \overrightarrow{i} + 2\overrightarrow{j} 3\overrightarrow{k}$ .
  - (a) Find the directional derivative of f in the direction of  $\overrightarrow{a}$ .
  - (b) What is the equation of the level surface of f that contains the point (1,1-1)? Find an equation for the tangent plane and parametric equations for the normal line to this surface at the point (1, 1, -1).

- 6. Determine and classify all stationary points of the function  $f(x,y) = xy x^3 y^3$ .
- 7. Let F(x, y, z) = xyz. Use the method of Lagrange multipliers to find the maximum and minimum values of F on the sphere  $x^2 + y^2 + z^2 1 = 0$ .
- 8.(a) Use a double integral to find the volume of the solid under the plane z = 2x + y and over the rectangle  $R = \{(x, y) : 3 \le x \le 5, 1 \le y \le 2\}$ .
  - (b) Evaluate the double integral

$$\iint\limits_R y\,dA$$

where R is the region in the first quadrant and enclosed between the circle  $x^2 + y^2 = 25$  and the line x + y = 5.

- 9. Reverse the order of integration in  $\int_0^1 \int_{4x}^4 e^{-y^2} dy dx$  and then evaluate the integral.
- 10. Use polar coordinates to evaluate

$$\iint\limits_R \frac{1}{1+x^2+y^2} \, dA,$$

where R is the sector in the first quadrant bounded by y = 0, y = x, and  $x^2 + y^2 = 4$ .

- 11. Find the area of the surface on the cylinder  $y^2 + z^2 = 9$  which is above the rectangle  $R = \{(x, y) : 0 \le x \le 2, -3 \le y \le 3\}$ .
- 12. Compute the triple integral

$$\iiint\limits_{G} xyz\,dV$$

where G is the solid in the first octant that is bounded by the parabolic cylinder  $z = 2 - x^2$  and the planes z = 0, y = 0, and y = x.

13. Use the transformation u = x - 2y, v = 2x + y to evaluate

$$\iint\limits_{R} \frac{x-2y}{2x+y} dA$$

where R is the region enclosed by the lines x-2y=1, x-2y=4, 2x+y=1, and 2x+y=3.

14. Evaluate the line integral

$$\int_C (3x+2y)dx + (2x-y)dy$$

where C is the curve  $x = y^3$  from (0,0) to (1,1).

15. Evaluate the line integral using Green's Theorem and check the answer by evaluating it directly.

$$\oint_C -y\,dx + xdy,$$

where C is the unit circle  $x^2 + y^2 = 1$  oriented counterclockwise.