1. Find $\frac{dy}{dx}$ for the following functions.

$$a. \quad 2x + xy^2 = y^3$$

b.
$$y = \int_{2}^{x^4} \frac{t}{\sqrt{t^3 + 2}} dt$$

c.
$$y = \tan(\cos(5x))$$

2. Find the following antiderivatives.

a.
$$\int \sin^4 x \cos^3 x dx$$

$$b. \quad \int x^3 e^{-x^2} dx$$

$$c. \int \frac{x^3 + 2x - 1}{x^2} dx$$

- 3. State and prove the Intermediate Value Theorem. Any theorem(s) used in proving the Intermediate Value Theorem must be stated clearly.
- 4. Suppose $f: S \to \Re$ for $S \subseteq \Re$ is continuous. For each of the following statements, state whether it is true or false. If it is false, give a counter example.
 - a) If S is bounded then f(S) is bounded.
 - b) If S is compact the f(S) is compact.
 - c) If S is open, then f(S) is open.

5

(a) Determine if the series converges or diverges:

$$\sum_{n=1}^{\infty} n e^{-n^2}$$

(b) Determine if the series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{n^n}{n!}$$

(c) By reversing the order of integration, evaluate the double integral:

$$\int_{0}^{4} \int_{\sqrt{y}}^{2} y \cos x^{5} dx dy$$

6. Let A be a symmetric matrix $(A^T = A)$ with eigenvectors \mathbf{v}_1 and \mathbf{v}_2 and corresponding distinct eigenvalues λ_1 and λ_2 . Show that \mathbf{v}_1 and \mathbf{v}_2 are orthogonal $(\mathbf{v}_1 \cdot \mathbf{v}_2 = 0)$.

- 7. Find the eigenvalues and corresponding eigenvectors for $A = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix}$.
- 8. Show by induction that for positive integers n,

by induction that for positive integers
$$n$$
,
$$\begin{bmatrix}
\cos\theta & k\sin\theta \\
-\frac{1}{k}\sin\theta & \cos\theta
\end{bmatrix}^n = \begin{bmatrix}
\cos n\theta & k\sin n\theta \\
-\frac{1}{k}\sin n\theta & \cos n\theta
\end{bmatrix},$$

where k is a non-zero number. .

- 9. Using the definition, show that $\lim_{n\to\infty} \frac{n}{n+1} = 1$.
- 10. Give examples of the following:
 - a) Nonconvergent sequence and a subsequence which converges.
 - b) A bounded sequence which does not converge.
 - c) An increasing sequence which does not converge.