

SHOW ALL WORK. Justify your answers! No Calculator Permitted.
Simplify your answers. Give exact answers whenever possible.
Each problem = 20 pts. Solve all 10 problems below. Exam total=200 pts.

1. A particle traveling in a circle has velocity function $v(t) = 3 \sin t \mathbf{i} + 3 \cos t \mathbf{j}$ with initial position $\mathbf{r}(0) = 3\mathbf{j} - 3\mathbf{k}$.
 - (a) Find the position function $\mathbf{r}(t)$ for this particle.
 - (b) Find the distance traveled by this particle over $0 \leq t \leq \frac{\pi}{2}$.
2. Do the following, where $z = f(x, y)$ where $x = r \cos 2\theta$, $y = r \sin 2\theta$.
 - (a) Using limit notation, write what it means for the function f_y to be continuous at the point (a, b) .
 - (b) Find $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \theta}$ if f_x and f_y are continuous.
 - (c) Show that $y = r \sin 2\theta$ is a solution to the partial differential equation $4(y_r)^2 + (y_{\theta r})^2 + 4(y_{r\theta})^2 + (y_{\theta\theta})^2 = 20$.
3. Let $f(x, y) = xy + e^{x+3y}$ denote the temperature of a circular disk in °F. Assume distance is measured in feet.
 - (a) Find the equation of the tangent plane to $z = f(x, y)$ at $(-3, 1)$.
 - (b) Find $D_u f(-3, 1)$ in the direction of $(1, 4)$, indicate units of measure, and explain what $D_u f(-3, 1)$ means.
4. The plane $z = 2x + 8y$ intersects the cylinder $x^2 + y^2 = 17$ in an ellipse. Find the maximum and minimum perpendicular distances from this ellipse to the xy -plane.
5. Let D be the triangular region in the xy -plane with vertices at $(0, 0, 0)$, $(2, 2, 0)$, and $(4, 0, 0)$, which is bounded by $y = x$, $x + y = 4$ and $y = 0$. Do the following.
 - (a) Show that $\iint_D y \, dA = \frac{8}{3}$ by evaluating this integral.
 - (b) Describe a solid which the integral in (a) represents the volume of.
 - (c) If C is the boundary of D oriented counter-clockwise, use Green's Theorem and your answer in part (a) to evaluate the line integral $\int_C x^2 \, dx + xy \, dy$.
 - (d) Let $-C$ be the traversal of C in a clockwise direction. Use your answer in (c) to set up and state the value of a line integral over $-C$ that equals the work done by $\mathbf{F} = x^2 \mathbf{i} + xy \mathbf{j}$ in moving a particle along $-C$ (in a clock-wise direction).
6. Find the area of the part of the paraboloid $z = 9 - x^2 - y^2$ that lies above the xy -plane.

(continued on the next page)

7. Let E be the solid which is under the parabolic cylinder $z = x^2$ and above the region $D = \{(x, y, 0) \mid 0 \leq y \leq 3, \frac{1}{3}y \leq x \leq 1\}$. Do the following.

(a) Simplify $\iiint_E \cos z \, dV$ into an iterated double integral.

(b) Switch the order of the integration in the double integral obtained in part (a), and simplify it into a single integral with limits. Do not evaluate.

8. Let E_1 be the solid bounded by the ellipsoid $\frac{x^2}{9} + \frac{y^2}{4} + \frac{z^2}{25} = 1$. Do the following.

(a) Show that the substitution $x = 3u$, $y = 2v$, and $z = 5w$ transforms E_1 into a solid E_2 which is bounded by the unit sphere centered at the origin.

(b) Compute the Jacobian $\frac{\partial(x,y,z)}{\partial(u,v,w)}$ of this change in variables.

(c) Use the Change in Variables Theorem to rewrite the following triple integral over E_1 as a triple integral over E_2 in terms of u , v , and w .

$$\iiint_{E_1} \sqrt{\frac{x^2}{9} + \frac{y^2}{4} + \frac{z^2}{25}} \, dV$$

(d) Rewrite the triple integral over E_2 obtained in part (c) as a product of three single integrals with limits by first changing the integral over E_2 to spherical coordinates. Do not evaluate.

9. Let E be the right circular cylinder bounded by the surfaces $x^2 + y^2 = 4$, $z = 3$, and $z = 9$. The velocity field $\mathbf{F} = 3x\mathbf{i} + 2y\mathbf{j} + 4z\mathbf{k}$ describes how a liquid flows outward through the permeable surface S of E equipped with an outward unit normal vector function \mathbf{n} . Distance is measured in ft and time in min. Do the following.

(a) Use Gauss's Divergence Theorem to evaluate $\iint_S \mathbf{F} \cdot \mathbf{n} \, dS$.

(b) Let S_1 and S_2 respectively be the top and bottom circular disks of E . Evaluate $\iint_{S_1} \mathbf{F} \cdot \mathbf{n} \, dS$ and $\iint_{S_2} \mathbf{F} \cdot \mathbf{n} \, dS$.

(c) Use the results in part (a) and (b) to find the flux of \mathbf{F} through S_3 , the part of S bounded by $x^2 + y^2 = 4$. Indicate units of measure, and explain what your answer means in terms of liquid flow.

10. Let S be the rectangle which is the part of the plane $y + z = 2$ that has vertices at $(4, 2, 0)$, $(0, 2, 0)$, $(0, 0, 2)$ and $(4, 0, 2)$ with boundary C . Let the force field $\mathbf{F} = 2y\mathbf{i} + 8x\mathbf{j} - 5xz\mathbf{k}$. Do the following.

(a) Show that $\nabla \times \mathbf{F} = 5z\mathbf{j} + 6\mathbf{k}$.

(b) State the equation for Stokes' Theorem and use it to set up a simplified, iterated double integral that equals the work done by \mathbf{F} in moving a particle counter-clockwise around C . Do not evaluate.

(end of exam)