

Calculus III Final Exam Form A Solution Key
 Fall 2025

1. A particle traveling in a circle has velocity function $v(t) = 3 \sin t \mathbf{i} + 3 \cos t \mathbf{j}$ with initial position $\mathbf{r}(0) = 3\mathbf{j} - 3\mathbf{k}$.

(a) Find the position function $\mathbf{r}(t)$ for this particle.
 (b) Find the distance traveled by this particle over $0 \leq t \leq \frac{\pi}{2}$.

(a) $\mathbf{r}'(t) = 3 \sin t \mathbf{i} + 3 \cos t \mathbf{j}$, $\mathbf{r}(0) = 3\mathbf{j} - 3\mathbf{k}$.

$$\begin{aligned} \int \mathbf{r}'(t) dt &= \int (3 \sin t \mathbf{i} + 3 \cos t \mathbf{j}) dt \\ \mathbf{r}(t) &= -3 \cos t \mathbf{i} + 3 \sin t \mathbf{j} + \mathbf{c} \\ \mathbf{r}(0) &= -3 \cos(0) \mathbf{i} + 3 \sin(0) \mathbf{j} + \mathbf{c} \\ 3\mathbf{j} - 3\mathbf{k} &= -3\mathbf{i} + \mathbf{c} \\ 3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k} &= \mathbf{c}. \end{aligned}$$

Therefore, $\mathbf{r}(t) = (-3 \cos t + 3) \mathbf{i} + (3 \sin t + 3) \mathbf{j} - 3\mathbf{k}$.

(b)

$$\begin{aligned} TD &= \int_0^{\frac{\pi}{2}} |\mathbf{v}(t)| dt = \int_0^{\frac{\pi}{2}} \sqrt{(3 \sin t)^2 + (3 \cos t)^2} dt \\ &= \int_0^{\frac{\pi}{2}} \sqrt{9(\sin^2 t + \cos^2 t)} dt = \int_0^{\frac{\pi}{2}} 3 dt = [3t]_0^{\frac{\pi}{2}} = \frac{3\pi}{2}. \end{aligned}$$

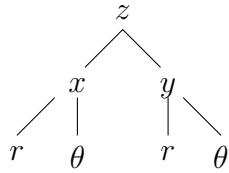
2. Do the following, where $z = f(x, y)$ where $x = r \cos 2\theta$, $y = r \sin 2\theta$.

(a) Using limit notation, write what it means for the function f_y to be continuous at the point (a, b) .
 (b) Find $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \theta}$ if f_x and f_y are continuous.
 (c) Show that $y = r \sin 2\theta$ is a solution to the partial differential equation $4(y_r)^2 + (y_{\theta r})^2 + 4(y_{r\theta})^2 + (y_{\theta\theta})^2 = 20$.

(a) The function f_y is continuous at the point (a, b) means that:

(i) $f_y(a, b)$ exists
 (ii) $\lim_{(x,y) \rightarrow (a,b)} f_y(x, y)$ exists
 (iii) $\lim_{(x,y) \rightarrow (a,b)} f_y(x, y) = f_y(a, b)$.

(b)



$$\begin{aligned}\frac{\partial z}{\partial r} &= \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial r} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial r} \\ &= f_x(x, y) \cos 2\theta + f_y(x, y) \sin 2\theta.\end{aligned}$$

$$\begin{aligned}\frac{\partial z}{\partial \theta} &= \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial \theta} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial \theta} \\ &= -2f_x(x, y)r \sin 2\theta + 2f_y(x, y)r \cos 2\theta.\end{aligned}$$

(c)

$$y_r = \sin 2\theta, \quad y_{r\theta} = 2 \cos 2\theta, \quad y_{\theta r} = 2 \cos 2\theta, \quad y_{\theta\theta} = -4 \sin 2\theta$$

$$\begin{aligned}4(y_r)^2 + (y_{\theta r})^2 + 4(y_{r\theta})^2 + (y_{\theta\theta})^2 &= 4 \sin^2 2\theta + 4 \cdot 4 \cos^2 2\theta + 4 \cos^2 2\theta + 16 \sin^2 2\theta \\ &= 4(\sin^2 2\theta + \cos^2 2\theta) + 16(\cos^2 2\theta + \sin^2 2\theta) \\ &= 4 \cdot 1 + 16 \cdot 1 = 20.\end{aligned}$$

3. Let $f(x, y) = xy + e^{x+3y}$ denote the temperature of a circular disk in $^{\circ}\text{F}$. Assume distance is measured in feet.

(a) Find the equation of the tangent plane to $z = f(x, y)$ at $(-3, 1)$.
 (b) Find $D_u f(-3, 1)$ in the direction of $(1, 4)$, indicate units of measure, and explain what $D_u f(-3, 1)$ means.

(a)

$f_x = y + e^{x+3y}, \quad f_y = x + 3e^{x+3y}$; so therefore
 $f(-3, 1) = -2, \quad f_x(-3, 1) = 2, \quad f_y(-3, 1) = 0$. The equation of the tangent plane is therefore

$$\begin{aligned}z &= f(-3, 1) + f_x(-3, 1)(x + 3) + f_y(-3, 1)(y - 1) \\ &= -2 + 2(x + 3) + 0(y - 1) \\ z &= 2x + 4.\end{aligned}$$

(b)

$\mathbf{v} = \langle 1, 4 \rangle - \langle -3, 1 \rangle = \langle 4, 3 \rangle$. $|\mathbf{v}| = \sqrt{4^2 + 3^2} = 5$ and $\nabla f(-3, 1) = \langle 2, 0 \rangle$.
 Therefore $\mathbf{u} = \langle \frac{4}{5}, \frac{3}{5} \rangle$ and so

$$D_u f(-3, 1) = \nabla f(-3, 1) \cdot \mathbf{u} = \langle 2, 0 \rangle \cdot \langle \frac{4}{5}, \frac{3}{5} \rangle = \frac{8}{5} \frac{^{\circ}\text{F}}{\text{ft}}. \quad (1)$$

The answer in (4) means that the temperature of the circular disk will increase by 8°F over a 5ft increase in the direction of \mathbf{v} from the point $(-3, 1)$.

4. The plane $z = 2x + 8y$ intersects the cylinder $x^2 + y^2 = 17$ in an ellipse. Find the maximum and minimum perpendicular distances from this ellipse to the xy -plane.

The goal is to optimize $f(x, y) = 2x + 8y$ subject to the constraint $g(x, y) = 17$ where $g(x, y) = x^2 + y^2$. By the method of Lagrange multipliers, we have that

$$\begin{aligned}\nabla f(x, y) &= \lambda \nabla g(x, y) \\ f_x(x, y)\mathbf{i} + f_y(x, y)\mathbf{j} &= \lambda g_x(x, y)\mathbf{i} + \lambda g_y(x, y)\mathbf{j},\end{aligned}$$

which implies that

$$\begin{aligned}f_x(x, y) &= \lambda g_x(x, y) & f_y(x, y) &= \lambda g_y(x, y) \\ 2 &= \lambda \cdot 2x & 8 &= \lambda \cdot 2y \\ \frac{1}{\lambda} &= x & \frac{4}{\lambda} &= y\end{aligned}\tag{2}$$

By substitution into $g(x, y) = 17$ we obtain that

$$\begin{aligned}x^2 + y^2 &= 17 \\ \frac{1}{\lambda^2} + \frac{16}{\lambda^2} &= 17 \\ \lambda^2 &= 1\end{aligned}$$

By substitution into (5) the two possibilities $\lambda = 1$, $\lambda = -1$ respectively correspond to the points $(-1, -4)$ and $(1, 4)$ on the circle $x^2 + y^2 = 17$. Thus the maximum and minimum values of $f(x, y)$ subject to $g(x, y) = 17$ are $f(-1, -4) = -34$ and $f(1, 4) = 34$. This means that the points on the ellipse that are the greatest distance from the xy -plane are $(-1, -4, -34)$ and $(1, 4, 34)$, and so 34 is the maximum distance from the ellipse to the xy -plane.

Since $f(x, y)$ is continuous over the domain $\{(x, y) \mid g(x, y) = 17\}$ and $f(-1, -4) = -34 < 0 < 34 = f(1, 4)$ the Intermediate Value Theorem implies that there is at least one point on the ellipse where $f(x, y) = 0$; and hence the minimum distance from the ellipse to the xy -plane is zero. To find where this occurs, set

$$f(x, y) = 2x + 8y = 0, \text{ which implies that}$$

$$\begin{aligned}x &= -4y, \text{ and so by substitution into } g(x, y) = 17 \\ (-4y)^2 + y^2 &= 17 \Rightarrow \\ y &= \pm 1, x = \mp 4\end{aligned}$$

Therefore, the minimum distance of zero from the ellipse to the xy -plane occurs at the two points $(-4, 1, 0)$ and $(4, -1, 0)$.

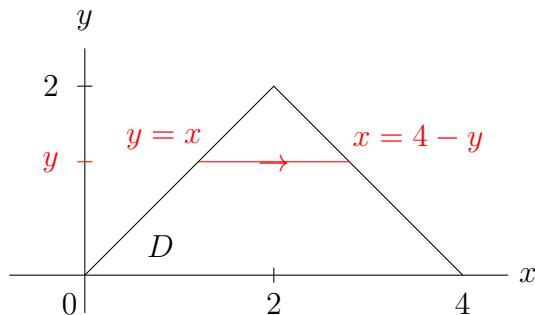
5. Let D be the triangular region in the xy -plane with vertices at $(0, 0, 0)$, $(2, 2, 0)$, and $(4, 0, 0)$, which is bounded by $y = x$, $x + y = 4$ and $y = 0$. Do the following.

(a) Show that $\iint_D y \, dA = \frac{8}{3}$ by evaluating this integral.

(b) Describe a solid which the integral in (a) represents the volume of.

(c) If C is the boundary of D oriented counter-clockwise, use Green's Theorem and your answer in part (a) to evaluate the line integral $\int_C x^2 \, dx + xy \, dy$.

(d) Let $-C$ be the traversal of C in a clockwise direction. Use your answer in (c) to set up and state the value of a line integral over $-C$ that equals the work done by $\mathbf{F} = x^2 \mathbf{i} + xy \mathbf{j}$ in moving a particle along $-C$ (in a clock-wise direction).



(a)

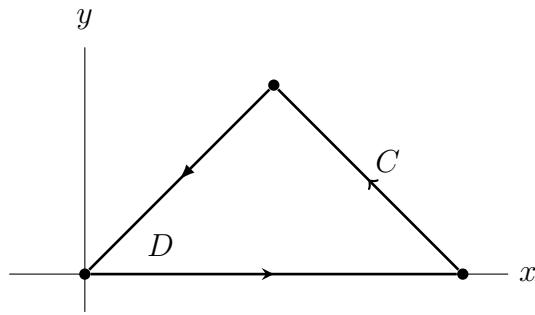
As a type II region, we can express the domain of integration as $D = \{(x, y) \mid 0 \leq y \leq 2, y \leq x \leq 4 - y\}$. Using the limits prescribed by this type II region, we can compute the required double integral as follows :

$$\begin{aligned}
 \iint_D y \, dA &= \int_0^2 \int_y^{4-y} y \, dx \, dy = \int_0^2 [xy]_{x=y}^{x=4-y} \, dy \\
 &= \int_0^2 (y(4-y) - y^2) \, dy = \int_0^2 (4y - 2y^2) \, dy \\
 &= [2y^2 - \frac{2}{3}y^3]_{y=0}^{y=2} \\
 &= \frac{8}{3}.
 \end{aligned}$$

(b)

The integral in (a) can represent a solid which lies above D and is bounded above by the plane $z = y$.

(c)



Since the conditions for Green's Theorem are satisfied, we can use the answer in (a) to compute the line integral around C , the boundary of D , as follows.

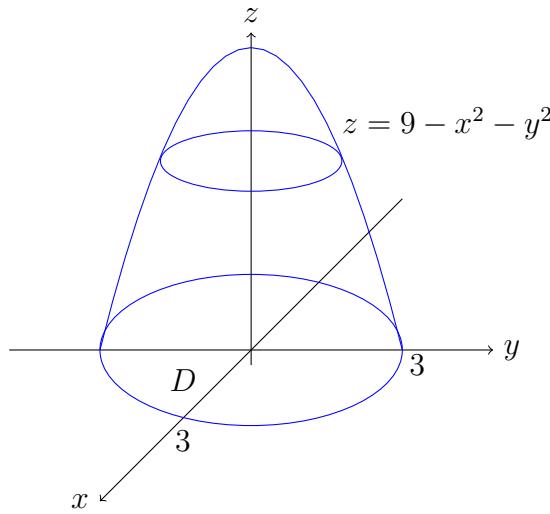
$$\begin{aligned} \int_C x^2 \, dx + xy \, dy &= \int_C P \, dx + Q \, dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA \\ &= \iint_D \left(\frac{\partial}{\partial x}(xy) - \frac{\partial}{\partial y}(x^2) \right) dA = \iint_D y \, dA = \frac{8}{3}. \end{aligned}$$

(d)

By making the identification $\mathbf{F} = x^2\mathbf{i} + xy\mathbf{j} = P(x, y)\mathbf{i} + Q(x, y)\mathbf{j}$, we can express the line integral over $-C$ in terms of the line integral over C in part (c), enabling us to compute

$$\int_{-C} \mathbf{F} \cdot d\mathbf{r} = - \int_C \mathbf{F} \cdot d\mathbf{r} = - \int_C x^2 \, dx + xy \, dy = -\frac{8}{3}.$$

6. Find the area of the part of the paraboloid $z = 9 - x^2 - y^2$ that lies above the xy -plane.



To determine the boundary of the domain D for this part of the paraboloid, set $9 - x^2 - y^2 = 0$, which is the circle $x^2 + y^2 = 9$. In rectangular and polar

coordinates, we may respectively represent D as

$$D = \{(x, y) \mid x^2 + y^2 \leq 9\} = \{(r, \theta) \mid 0 \leq r \leq 3, 0 \leq \theta \leq 2\pi\}.$$

Denote the paraboloid as $g(x, y) = 9 - x^2 - y^2$, and compute the surface area by using the appropriate formula as follows by switching to polar coordinates and using the separability property since the resulting integrand is separable (as a function of r only).

$$\begin{aligned} SA &= \iint_D \sqrt{1 + \left(\frac{\partial g}{\partial x}\right)^2 + \left(\frac{\partial g}{\partial y}\right)^2} dA = \iint_D \sqrt{1 + 4(x^2 + y^2)} dA \\ &= \int_0^{2\pi} \int_0^3 \sqrt{1 + 4r^2} \cdot r dr d\theta = \int_0^{2\pi} d\theta \int_0^3 \sqrt{1 + 4r^2} \cdot r dr \end{aligned} \quad (3)$$

To evaluate the integral in r , use the substitution $u = 4r^2 + 1$, which implies that $\frac{1}{8}du = r dr$, $u(0) = 1$, and $u(3) = 37$. We then obtain that

$$\begin{aligned} \int_0^3 \sqrt{1 + 4r^2} \cdot r dr &= \frac{1}{8} \int_1^{37} \sqrt{u} du = \left[\frac{1}{8} \cdot \frac{2}{3} u^{\frac{3}{2}} \right]_{u=1}^{u=37} \\ &= \frac{1}{12} (37\sqrt{37} - 1). \end{aligned}$$

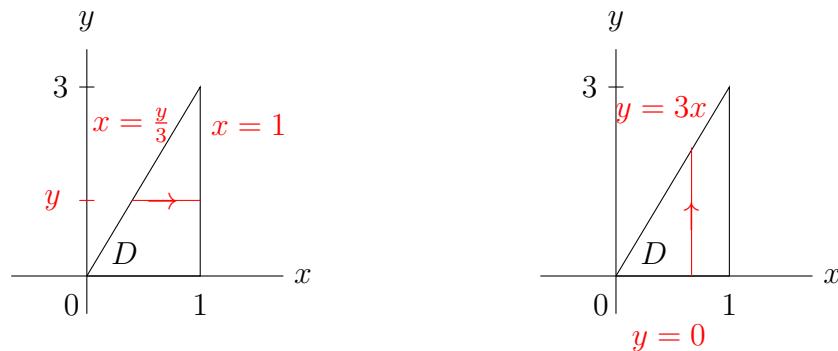
By direct computation, $\int_0^{2\pi} d\theta = 2\pi$. Upon substituting back into (6) we obtain that

$$SA = 2\pi \cdot \frac{1}{12} (37\sqrt{37} - 1) = \frac{\pi}{6} (37\sqrt{37} - 1).$$

7. Let E be the solid which is under the parabolic cylinder $z = x^2$ and above the region $D = \{(x, y, 0) \mid 0 \leq y \leq 3, \frac{1}{3}y \leq x \leq 1\}$. Do the following.

(a) Simplify $\iiint_E \cos z dV$ into an iterated double integral.
(b) Switch the order of the integration in the double integral obtained in part (a), and simplify it into a single integral with limits. Do not evaluate.

(a) To switch the order of integration in the double integral in (b), we need to reconsider the given type I region D as a type II region.



As a type II region, $D = \{(x, y) \mid 0 \leq x \leq 1, 0 \leq y \leq 3x\}$.

We can thus simplify the given triple integral into a single integral as required in parts (a) and (b) :

$$\begin{aligned}
 \iiint_D \cos z \, dV &= \iint_D \int_0^{x^2} \cos z \, dz \, dA = \iint_D [\sin z]_{z=0}^{z=x^2} \, dA \\
 &= \int_0^3 \int_{\frac{y}{3}}^1 \sin x^2 \, dx \, dy = \int_0^1 \int_0^{3x} \sin x^2 \, dy \, dx \\
 &= \int_0^1 [y \sin x^2]_{y=0}^{y=3x} \, dx = \int_0^1 3x \sin x^2 \, dx.
 \end{aligned}$$

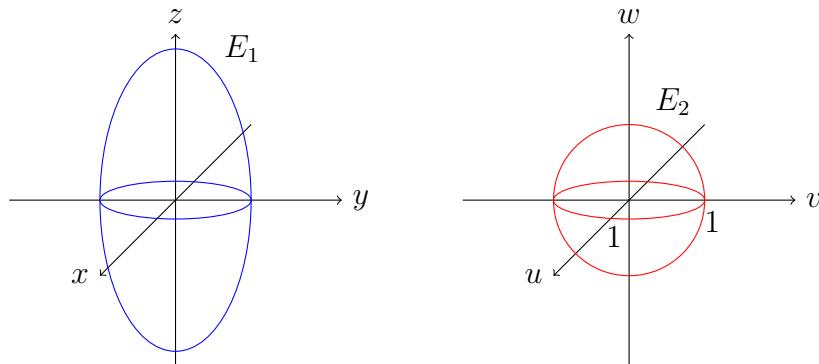
8. Let E_1 be the solid bounded by the ellipsoid $\frac{x^2}{9} + \frac{y^2}{4} + \frac{z^2}{25} = 1$. Do the following.

- Show that the substitution $x = 3u$, $y = 2v$, and $z = 5w$ transforms E_1 into a solid E_2 which is bounded by the unit sphere centered at the origin.
- Compute the Jacobian $\frac{\partial(x,y,z)}{\partial(u,v,w)}$ of this change in variables.
- Use the Change in Variables Theorem to rewrite the following triple integral over E_1 as a triple integral over E_2 in terms of u , v , and w .

$$\iiint_{E_1} \sqrt{\frac{x^2}{9} + \frac{y^2}{4} + \frac{z^2}{25}} \, dV$$

- Rewrite the triple integral over E_2 obtained in part (c) as a product of three single integrals with limits by first changing the integral over E_2 to spherical coordinates. Do not evaluate.

(a)



By direct substitution, the ellipsoid becomes $\frac{(3u)^2}{9} + \frac{(2v)^2}{4} + \frac{(5w)^2}{25} = 1$, which simplifies to $u^2 + v^2 + w^2 = 1$.

(b)

$$\frac{\partial(x, y, z)}{\partial(u, v, w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix} = \begin{vmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{vmatrix} = 3 \cdot 2 \cdot 5 = 30.$$

(c), (d)

Note that in terms of spherical coordinates,

$$E_2 = \{(\rho, \theta, \phi) \mid 0 \leq \rho \leq 1, 0 \leq \theta \leq 2\pi, 0 \leq \phi \leq \pi\}.$$

By applying the Change in Variables Theorem twice; first to change the domain of the original integral from E_1 to E_2 , and second to rewrite the integral over E_2 using spherical coordinates, we obtain the following.

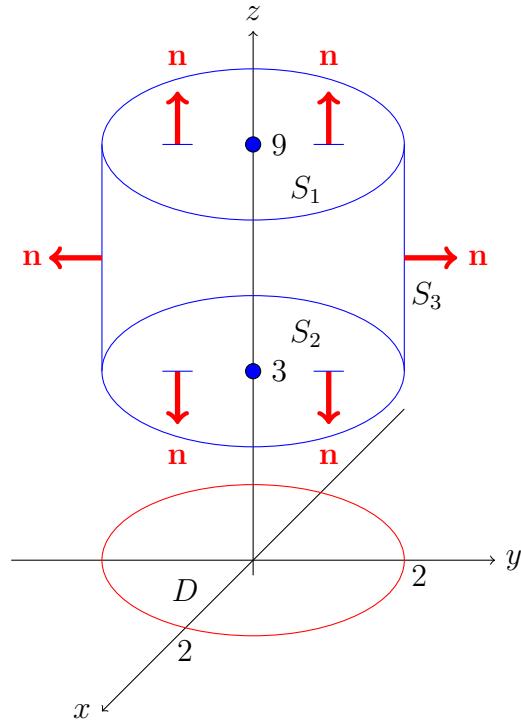
$$\begin{aligned} \iiint_{E_1} \sqrt{\frac{x^2}{9} + \frac{y^2}{4} + \frac{z^2}{25}} \, dV &= \iiint_{E_2} \sqrt{\frac{(3u)^2}{9} + \frac{(2v)^2}{4} + \frac{(5w)^2}{25}} \cdot \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| \, dV \\ &= \iiint_{E_2} \sqrt{u^2 + v^2 + w^2} \cdot 30 \, dV \\ &= 30 \int_0^1 \int_0^{2\pi} \int_0^\pi \sqrt{\rho^2} \cdot \rho^2 \sin \phi \, d\phi \, d\theta \, d\rho. \\ &= 30 \int_0^1 \rho^3 d\rho \int_0^{2\pi} d\theta \int_0^\pi \sin \phi \, d\phi. \end{aligned}$$

9. Let E be the right circular cylinder bounded by the surfaces $x^2 + y^2 = 4$, $z = 3$, and $z = 9$. The velocity field $\mathbf{F} = 3x\mathbf{i} + 2y\mathbf{j} + 4z\mathbf{k}$ describes how a liquid flows outward through the permeable surface S of E equipped with an outward unit normal vector function \mathbf{n} . Distance is measured in ft and time in min. Do the following.

(a) Use Gauss's Divergence Theorem to evaluate $\iint_S \mathbf{F} \cdot \mathbf{n} \, dS$.

(b) Let S_1 and S_2 respectively be the top and bottom circular disks of E . Evaluate $\iint_{S_1} \mathbf{F} \cdot \mathbf{n} \, dS$ and $\iint_{S_2} \mathbf{F} \cdot \mathbf{n} \, dS$.

(c) Use the results in part (a) and (b) to find the flux of \mathbf{F} through S_3 , the part of S bounded by $x^2 + y^2 = 4$. Indicate units of measure, and explain what your answer means in terms of liquid flow.



(a)

$$\begin{aligned}
 \iint_S \mathbf{F} \cdot \mathbf{n} \, dS &= \iiint_E \nabla \cdot \mathbf{F} \, dV \\
 &= \iiint_E \left(\frac{\partial}{\partial x}(3x) + \frac{\partial}{\partial y}(2y) + \frac{\partial}{\partial z}(4z) \right) \, dV \\
 &= \iiint_E 9 \, dV = 9 \iiint_E 1 \, dV = 9 \cdot \text{Volume}(E) \\
 &= 9 \cdot \pi(2)^2 \cdot 6 \\
 &= 216\pi.
 \end{aligned}$$

(b)

The domain for S , S_1 , and S_2 is D , which is a circle centered at the origin with a radius of 2. The surface S_1 has equation $g_1(x, y) = 9$, for which $\frac{\partial g_1}{\partial x} = 0$ and $\frac{\partial g_1}{\partial y} = 0$. The pre-unit normal vector to S_1 is given by

$$\mathbf{N} = -\frac{\partial g_1}{\partial x}\mathbf{i} - \frac{\partial g_1}{\partial y}\mathbf{j} + \mathbf{k} = 0\mathbf{i} + 0\mathbf{j} + 1\mathbf{k}.$$

Therefore,

$$\begin{aligned}
\iint_{S_1} \mathbf{F} \cdot \mathbf{n} \, dS &= \iint_D \mathbf{F} \cdot \mathbf{N} \, dA \\
&= \iint_{S_1} (3x\mathbf{i} + 2y\mathbf{j} + 4z\mathbf{k}) \cdot (0\mathbf{i} + 0\mathbf{j} + 1\mathbf{k}) \, dA \\
&= \iint_D 4z \, dA = \iint_D 4 \cdot 9 \, dA = 36 \iint_D 1 \, dA \\
&= 36 \cdot \text{Area}(D) = 36\pi \cdot 2^2 = 144\pi.
\end{aligned}$$

Likewise, the surface S_2 has equation $g_2(x, y) = 3$, for which $\frac{\partial g_2}{\partial x} = 0$ and $\frac{\partial g_2}{\partial y} = 0$. The pre-unit normal vector to S_2 is given by

$$\mathbf{N} = \frac{\partial g_1}{\partial x}\mathbf{i} + \frac{\partial g_1}{\partial y}\mathbf{j} - \mathbf{k} = 0\mathbf{i} + 0\mathbf{j} - 1\mathbf{k}.$$

Therefore,

$$\begin{aligned}
\iint_{S_1} \mathbf{F} \cdot \mathbf{n} \, dS &= \iint_D \mathbf{F} \cdot \mathbf{N} \, dA \\
&= \iint_{S_2} (3x\mathbf{i} + 2y\mathbf{j} + 4z\mathbf{k}) \cdot (0\mathbf{i} + 0\mathbf{j} - 1\mathbf{k}) \, dA \\
&= \iint_D -4z \, dA = \iint_D -4 \cdot 3 \, dA = 36 \iint_D 1 \, dA \\
&= -12 \cdot \text{Area}(D) = -12\pi \cdot 2^2 = -48\pi.
\end{aligned}$$

(c)

By the additivity property for surface integrals,

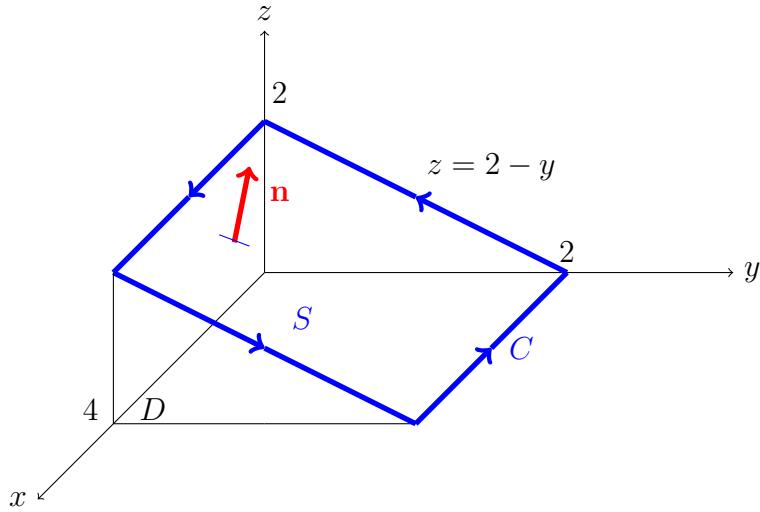
$$\begin{aligned}
\iint_{S_1} \mathbf{F} \cdot \mathbf{n} \, dS + \iint_{S_2} \mathbf{F} \cdot \mathbf{n} \, dS + \iint_{S_3} \mathbf{F} \cdot \mathbf{n} \, dS &= \iint_S \mathbf{F} \cdot \mathbf{n} \, dS \\
144\pi - 48\pi + \iint_{S_3} \mathbf{F} \cdot \mathbf{n} \, dS &= 216\pi \\
\iint_{S_3} \mathbf{F} \cdot \mathbf{n} \, dS &= 120\pi.
\end{aligned}$$

The flux through S_3 is $120 \frac{\text{ft}^3}{\text{min}}$, which means that in 1 minute $120\pi \text{ ft}^3$ of liquid permeates through S_3 .

10. Let S be the rectangle which is the part of the plane $y + z = 2$ that has vertices at $(4, 2, 0)$, $(0, 2, 0)$, $(0, 0, 2)$ and $(4, 0, 2)$ with boundary C . Let the force field $\mathbf{F} = 2y\mathbf{i} + 8x\mathbf{j} - 5xz\mathbf{k}$. Do the following.

(a) Show that $\nabla \times \mathbf{F} = 5z\mathbf{j} + 6\mathbf{k}$.

(b) State the equation for Stokes' Theorem and use it to set up a simplified, iterated double integral that equals the work done by \mathbf{F} in moving a particle counter-clockwise around C . Do not evaluate.



(a)

For the force field $\mathbf{F} = 2y\mathbf{i} + 8x\mathbf{j} - 5xz\mathbf{k}$, we have that

$$\begin{aligned} \nabla \times \mathbf{F} &= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2y & 8x & -5xz \end{vmatrix} \\ &= \mathbf{i} \begin{vmatrix} \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 8x & -5xz \end{vmatrix} - \mathbf{j} \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\ 2y & -5xz \end{vmatrix} + \mathbf{k} \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ 2y & 8x \end{vmatrix} \\ &= \mathbf{i}(0 - 0) - \mathbf{j}(-5z - 0) + \mathbf{k}(8 - 2) \\ &= 0\mathbf{i} + 5z\mathbf{j} + 6\mathbf{k}. \end{aligned}$$

(b)

Denote the equation for the surface S by $g(x, y) = 2 - y$. Note that the domain D of S is given by $D = \{(x, y) \mid 0 \leq x \leq 2, 0 \leq y \leq 4\}$. By the right hand thumb rule, since C is oriented counter-clockwise, the unit normal vector \mathbf{n} to S has an upward \mathbf{k} component. Therefore, the associated pre-unit normal vector to S is

$$\mathbf{N} = -\frac{\partial g}{\partial x}\mathbf{i} - \frac{\partial g}{\partial y}\mathbf{j} + \mathbf{k} = 0\mathbf{i} + 1\mathbf{j} + 1\mathbf{k}.$$

Therefore, by applying Stokes' Theorem, the work done by \mathbf{F} in moving a particle counter-clockwise is

$$\begin{aligned}
 \text{Work} &= \int_C \mathbf{F} \cdot d\mathbf{r} = \iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS = \iint_D (\nabla \times \mathbf{F}) \cdot \mathbf{N} \, dA \\
 &= \int_0^4 \int_0^2 (0\mathbf{i} + 5z\mathbf{j} + 6\mathbf{k}) \cdot (0\mathbf{i} + 1\mathbf{j} + 1\mathbf{k}) \, dy \, dx = \int_0^4 \int_0^2 (5z + 6) \, dy \, dx \\
 &= \int_0^4 \int_0^2 (5(2 - y) + 6) \, dx \, dy = \int_0^4 \int_0^2 (16 - 5y) \, dy \, dx.
 \end{aligned}$$

Calculus III Final Exam Form B Solution Key
 Fall 2025

1. A particle traveling in a circle has velocity function $v(t) = 2 \cos t \mathbf{i} + 2 \sin t \mathbf{j}$ with initial position $\mathbf{r}(0) = 2\mathbf{j} + 2\mathbf{k}$.

(a) Find the position function $\mathbf{r}(t)$ for this particle.
 (b) Find the distance traveled by this particle over $0 \leq t \leq \frac{\pi}{2}$.

(a) $\mathbf{r}'(t) = 3 \sin t \mathbf{i} + 3 \cos t \mathbf{j}$, $\mathbf{r}(0) = 3\mathbf{j} - 3\mathbf{k}$.

$$\begin{aligned} \int \mathbf{r}'(t) dt &= \int (2 \cos t \mathbf{i} + 2 \sin t \mathbf{j}) dt \\ \mathbf{r}(t) &= 2 \sin t \mathbf{i} - 2 \cos t \mathbf{j} + \mathbf{c} \\ \mathbf{r}(0) &= 2 \sin(0) \mathbf{i} - 2 \cos(0) \mathbf{j} + \mathbf{c} \\ 2\mathbf{j} + 2\mathbf{k} &= 0\mathbf{i} - 2\mathbf{j} + \mathbf{c} \\ 4\mathbf{j} + 2\mathbf{k} &= \mathbf{c}. \end{aligned}$$

Therefore, $\mathbf{r}(t) = 2 \sin t \mathbf{i} + (-2 \cos t + 4) \mathbf{j} + 2\mathbf{k}$.

(b)

$$\begin{aligned} TD &= \int_0^{\frac{\pi}{2}} |\mathbf{v}(t)| dt = \int_0^{\frac{\pi}{2}} \sqrt{(2 \cos t)^2 + (2 \sin t)^2} dt \\ &= \int_0^{\frac{\pi}{2}} \sqrt{4(\cos^2 t + \sin^2 t)} dt = \int_0^{\frac{\pi}{2}} 2 dt = [2t]_0^{\frac{\pi}{2}} = \pi. \end{aligned}$$

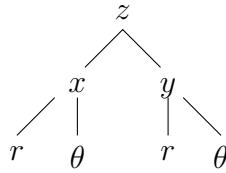
2. Do the following, where $z = f(x, y)$ where $x = r \cos 3\theta$, $y = r \sin 3\theta$.

(a) Using limit notation, write what it means for the function f_x to be continuous at the point (a, b) .
 (b) Find $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \theta}$ if f_x and f_y are continuous.
 (c) Show that $y = r \sin 2\theta$ is a solution to the partial differential equation $9(x_r)^2 + (x_{\theta r})^2 + 9(x_{r\theta})^2 + (x_{r\theta\theta})^2 = 90$.

(a) The function f_x is continuous at the point (a, b) means that:

(i) $f_x(a, b)$ exists
 (ii) $\lim_{(x,y) \rightarrow (a,b)} f_x(x, y)$ exists
 (iii) $\lim_{(x,y) \rightarrow (a,b)} f_x(x, y) = f_y(a, b)$.

(b)



$$\begin{aligned}\frac{\partial z}{\partial r} &= \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial r} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial r} \\ &= f_x(x, y) \cos 3\theta + f_y(x, y) \sin 3\theta.\end{aligned}$$

$$\begin{aligned}\frac{\partial z}{\partial \theta} &= \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial \theta} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial \theta} \\ &= -3f_x(x, y)r \sin 3\theta + 3f_y(x, y)r \cos 3\theta.\end{aligned}$$

(c)

$$x_r = \cos 3\theta, \quad x_{r\theta} = -3 \sin 3\theta, \quad x_{\theta r} = -3 \sin 3\theta, \quad x_{\theta\theta} = -9 \cos 3\theta$$

$$\begin{aligned}9(x_r)^2 + (x_{\theta r})^2 + 9(x_{r\theta})^2 + (x_{\theta\theta})^2 &= 9 \cos^2 3\theta + 9 \cdot 9 \sin^2 3\theta + 9 \sin^2 3\theta + 81 \cos^2 2\theta \\ &= 9(\sin^2 3\theta + \cos^2 3\theta) + 81(\sin^2 3\theta + \cos^2 3\theta) \\ &= 9 \cdot 1 + 81 \cdot 1 = 90.\end{aligned}$$

3. Let $f(x, y) = xy + e^{2x+y}$ denote the temperature of a circular disk in $^{\circ}\text{F}$. Assume distance is measured in feet.

(a) Find the equation of the tangent plane to $z = f(x, y)$ at $(-1, 2)$.
 (b) Find $D_u f(-1, 2)$ in the direction of $(3, 5)$, indicate units of measure, and explain what $D_u f(-1, 2)$ means.

(a)

$$f_x = y + 2e^{2x+y}, \quad f_y = x + e^{2x+y}; \text{ so therefore}$$

$f(-1, 2) = -1, \quad f_x(-1, 2) = 4, \quad f_y(-1, 2) = 0$. The equation of the tangent plane is therefore

$$\begin{aligned}z &= f(-1, 2) + f_x(-1, 2)(x + 1) + f_y(-1, 2)(y - 2) \\ &= -1 + 4(x + 1) + 0(y - 2) \\ z &= 4x + 3.\end{aligned}$$

(b)

$\mathbf{v} = \langle 3, 5 \rangle - \langle -1, 2 \rangle = \langle 4, 3 \rangle$. $|\mathbf{v}| = \sqrt{4^2 + 3^2} = 5$ and $\nabla f(-1, 2) = \langle 4, 0 \rangle$.
 Therefore $\mathbf{u} = \langle \frac{4}{5}, \frac{3}{5} \rangle$ and so

$$D_u f(-1, 2) = \nabla f(-1, 2) \cdot \mathbf{u} = \langle 4, 0 \rangle \cdot \langle \frac{4}{5}, \frac{3}{5} \rangle = \frac{16}{5} \text{ }^{\circ}\text{F}. \quad (4)$$

The answer in (4) means that the temperature of the circular disk will increase by 16°F over a 5ft increase in the direction of \mathbf{v} from the point $(-1, 2)$.

4. The plane $z = 4x + 6y$ intersects the cylinder $x^2 + y^2 = 13$ in an ellipse. Find the maximum and minimum perpendicular distances from this ellipse to the xy -plane.

The goal is to optimize $f(x, y) = 4x + 6y$ subject to the constraint $g(x, y) = 13$ where $g(x, y) = x^2 + y^2$. By the method of Lagrange multipliers, we have that

$$\begin{aligned}\nabla f(x, y) &= \lambda \nabla g(x, y) \\ f_x(x, y)\mathbf{i} + f_y(x, y)\mathbf{j} &= \lambda g_x(x, y)\mathbf{i} + \lambda g_y(x, y)\mathbf{j},\end{aligned}$$

which implies that

$$\begin{aligned}f_x(x, y) &= \lambda g_x(x, y) & f_y(x, y) &= \lambda g_y(x, y) \\ 4 &= \lambda \cdot 2x & 6 &= \lambda \cdot 2y \\ \frac{2}{\lambda} &= x & \frac{3}{\lambda} &= y\end{aligned}\tag{5}$$

By substitution into $g(x, y) = 13$ we obtain that

$$\begin{aligned}x^2 + y^2 &= 13 \\ \frac{4}{\lambda^2} + \frac{9}{\lambda^2} &= 13 \\ \lambda^2 &= 1\end{aligned}$$

By substitution into (5) the two possibilities $\lambda = 1$, $\lambda = -1$ respectively correspond to the points $(-1, -4)$ and $(1, 4)$ on the circle $x^2 + y^2 = 17$. Thus the maximum and minimum values of $f(x, y)$ subject to $g(x, y) = 17$ are $f(-2, -3) = -26$ and $f(2, 3) = 26$. This means that the points on the ellipse that are the greatest distance from the xy -plane are $(-2, -3, -26)$ and $(2, 3, 26)$, and so 26 is the maximum distance from the ellipse to the xy -plane.

Since $f(x, y)$ is continuous over the domain $\{(x, y) \mid g(x, y) = 13\}$ and $f(-2, -3) = -26 < 0 < 26 = f(2, 3)$ the Intermediate Value Theorem implies that there is at least one point on the ellipse where $f(x, y) = 0$; and hence the minimum distance from the ellipse to the xy -plane is zero. To find where this occurs, set

$$f(x, y) = 4x + 6y = 0, \text{ which implies that}$$

$$\begin{aligned}x &= -\frac{3}{2}y, \text{ and so by substitution into } g(x, y) = 13 \\ \left(-\frac{3}{2}y\right)^2 + y^2 &= 17 \Rightarrow \\ y &= \pm 2, x = \mp 3\end{aligned}$$

Therefore, the minimum distance of zero from the ellipse to the xy -plane occurs at the two points $(-3, 2, 0)$ and $(3, -2, 0)$.

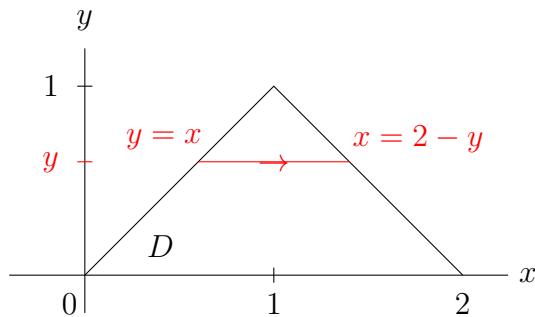
5. Let D be the triangular region in the xy -plane with vertices at $(0, 0, 0)$, $(1, 1, 0)$, and $(2, 0, 0)$, which is bounded by $y = x$, $x + y = 2$ and $y = 0$. Do the following.

(a) Show that $\iint_D y \, dA = \frac{1}{3}$ by evaluating this integral.

(b) Describe a solid which the integral in (a) represents the volume of.

(c) If C is the boundary of D oriented counter-clockwise, use Green's Theorem and your answer in part (a) to evaluate the line integral $\int_C x \, dx + xy \, dy$.

(d) Let $-C$ be the traversal of C in a clockwise direction. Use your answer in (c) to set up and state the value of a line integral over $-C$ that equals the work done by $\mathbf{F} = x^2\mathbf{i} + xy\mathbf{j}$ in moving a particle along $-C$ (in a clock-wise direction).



(a)

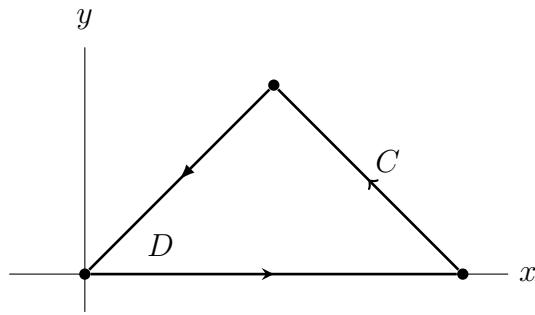
As a type II region, we can express the domain of integration as $D = \{(x, y) \mid 0 \leq y \leq 1, y \leq x \leq 2 - y\}$. Using the limits prescribed by this type II region, we can compute the required double integral as follows :

$$\begin{aligned}
 \iint_D y \, dA &= \int_0^1 \int_y^{2-y} y \, dx \, dy = \int_0^1 [xy]_{x=y}^{x=2-y} \, dy \\
 &= \int_0^1 (y(2-y) - y^2) \, dy = \int_0^1 (2y - 2y^2) \, dy \\
 &= [y^2 - \frac{2}{3}y^3]_{y=0}^{y=1} \\
 &= \frac{1}{3}.
 \end{aligned}$$

(b)

The integral in (a) can represent a solid which lies above D and is bounded above by the plane $z = y$.

(c)



Since the conditions for Green's Theorem are satisfied, we can use the answer in (a) to compute the line integral around C , the boundary of D , as follows.

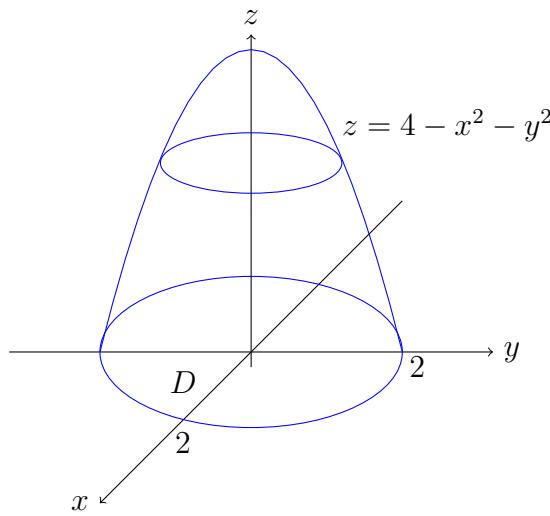
$$\begin{aligned} \int_C x \, dx + xy \, dy &= \int_C P \, dx + Q \, dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA \\ &= \iint_D \left(\frac{\partial}{\partial x}(xy) - \frac{\partial}{\partial y}(x) \right) dA = \iint_D y \, dA = \frac{1}{3}. \end{aligned}$$

(d)

By making the identification $\mathbf{F} = x\mathbf{i} + xy\mathbf{j} = P(x, y)\mathbf{i} + Q(x, y)\mathbf{j}$, we can express the line integral over $-C$ in terms of the line integral over C in part (c), enabling us to compute

$$\int_{-C} \mathbf{F} \cdot d\mathbf{r} = - \int_C \mathbf{F} \cdot d\mathbf{r} = - \int_C x \, dx + xy \, dy = -\frac{1}{3}.$$

6. Find the area of the part of the paraboloid $z = 4 - x^2 - y^2$ that lies above the xy -plane.



To determine the boundary of the domain D for this part of the paraboloid, set $4 - x^2 - y^2 = 0$, which is the circle $x^2 + y^2 = 4$. In rectangular and polar

coordinates, we may respectively represent D as

$$D = \{(x, y) \mid x^2 + y^2 \leq 4\} = \{(r, \theta) \mid 0 \leq r \leq 2, 0 \leq \theta \leq 2\pi\}.$$

Denote the paraboloid as $g(x, y) = 4 - x^2 - y^2$, and compute the surface area by using the appropriate formula as follows by switching to polar coordinates and using the separability property since the resulting integrand is separable (as a function of r only).

$$\begin{aligned} SA &= \iint_D \sqrt{1 + \left(\frac{\partial g}{\partial x}\right)^2 + \left(\frac{\partial g}{\partial y}\right)^2} dA = \iint_D \sqrt{1 + 4(x^2 + y^2)} dA \\ &= \int_0^{2\pi} \int_0^2 \sqrt{1 + 4r^2} \cdot r dr d\theta = \int_0^{2\pi} d\theta \int_0^2 \sqrt{1 + 4r^2} \cdot r dr \end{aligned} \quad (6)$$

To evaluate the integral in r , use the substitution $u = 4r^2 + 1$, which implies that $\frac{1}{8}du = rdr$, $u(0) = 1$, and $u(3) = 17$. We then obtain that

$$\begin{aligned} \int_0^2 \sqrt{1 + 4r^2} \cdot r dr &= \frac{1}{8} \int_1^{17} \sqrt{u} du = \left[\frac{1}{8} \cdot \frac{2}{3} u^{\frac{3}{2}} \right]_{u=1}^{u=17} \\ &= \frac{1}{12} (17\sqrt{17} - 1). \end{aligned}$$

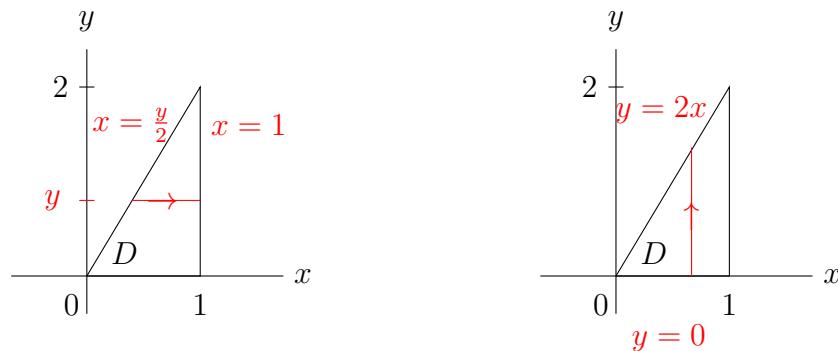
By direct computation, $\int_0^{2\pi} d\theta = 2\pi$. Upon substituting back into (6) we obtain that

$$SA = 2\pi \cdot \frac{1}{12} (17\sqrt{17} - 1) = \frac{\pi}{6} (17\sqrt{17} - 1).$$

7. Let E be the solid which is under the parabolic cylinder $z = x^2$ and above the region $D = \{(x, y, 0) \mid 0 \leq y \leq 2, \frac{1}{2}y \leq x \leq 1\}$. Do the following.

(a) Simplify $\iiint_E \cos z dV$ into an iterated double integral.
(b) Switch the order of the integration in the double integral obtained in part (a), and simplify it into a single integral with limits. Do not evaluate.

(a) To switch the order of integration in the double integral in (b), we need to reconsider the given type I region D as a type II region.



As a type II region, $D = \{(x, y) \mid 0 \leq x \leq 1, 0 \leq y \leq 2x\}$.

We can thus simplify the given triple integral into a single integral as required in parts (a) and (b) :

$$\begin{aligned}
 \iiint_D \cos z \, dV &= \iint_D \int_0^{x^2} \cos z \, dz \, dA = \iint_D [\sin z]_{z=0}^{z=x^2} \, dA \\
 &= \int_0^2 \int_{\frac{y}{2}}^1 \sin x^2 \, dx \, dy = \int_0^1 \int_0^{2x} \sin x^2 \, dy \, dx \\
 &= \int_0^1 [y \sin x^2]_{y=0}^{y=2x} \, dx = \int_0^1 2x \sin x^2 \, dx.
 \end{aligned}$$

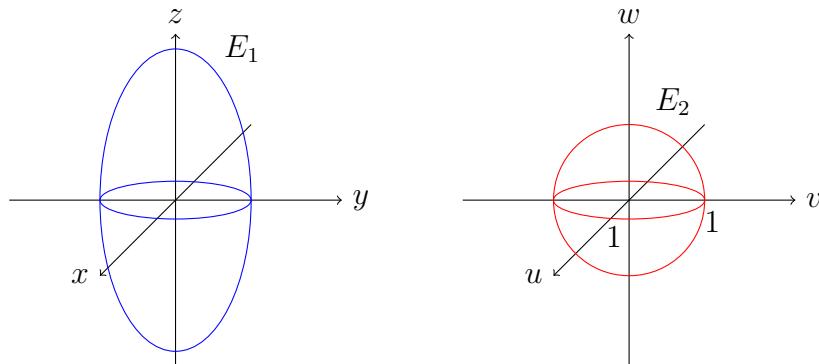
8. Let E_1 be the solid bounded by the ellipsoid $\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{16} = 1$. Do the following.

- (a) Show that the substitution $x = 2u$, $y = 3v$, and $z = 4w$ transforms E_1 into a solid E_2 which is bounded by the unit sphere centered at the origin.
- (b) Compute the Jacobian $\frac{\partial(x,y,z)}{\partial(u,v,w)}$ of this change in variables.
- (c) Use the Change in Variables Theorem to rewrite the following triple integral over E_1 as a triple integral over E_2 in terms of u , v , and w .

$$\iiint_{E_1} \sqrt{\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{16}} \, dV$$

- (d) Rewrite the triple integral over E_2 obtained in part (c) as a product of three single integrals with limits by first changing the integral over E_2 to spherical coordinates. Do not evaluate.

(a)



By direct substitution, the ellipsoid becomes $\frac{(2u)^2}{4} + \frac{(3v)^2}{9} + \frac{(4w)^2}{16} = 1$, which simplifies to $u^2 + v^2 + w^2 = 1$.

(b)

$$\frac{\partial(x, y, z)}{\partial(u, v, w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix} = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{vmatrix} = 2 \cdot 3 \cdot 4 = 24.$$

(c), (d)

Note that in terms of spherical coordinates,

$$E_2 = \{(\rho, \theta, \phi) \mid 0 \leq \rho \leq 1, 0 \leq \theta \leq 2\pi, 0 \leq \phi \leq \pi\}.$$

By applying the Change in Variables Theorem twice; first to change the domain of the original integral from E_1 to E_2 , and second to rewrite the integral over E_2 using spherical coordinates, we obtain the following.

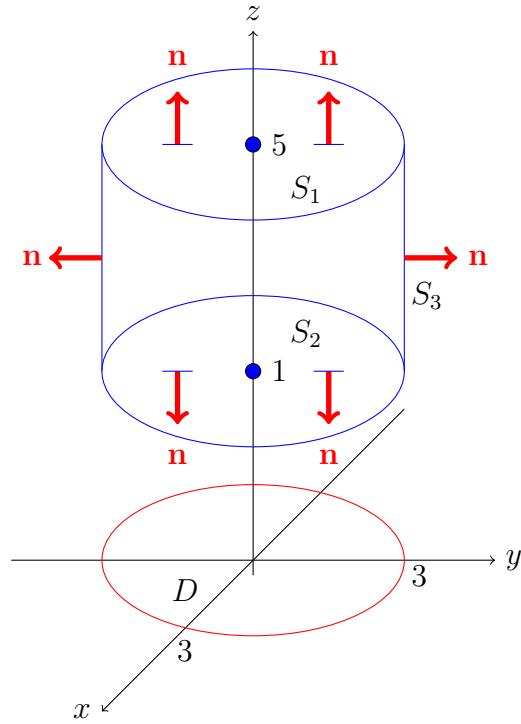
$$\begin{aligned} \iiint_{E_1} \sqrt{\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{16}} \, dV &= \iiint_{E_2} \sqrt{\frac{(3u)^2}{9} + \frac{(2v)^2}{4} + \frac{(5w)^2}{25}} \cdot \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| \, dV \\ &= \iiint_{E_2} \sqrt{u^2 + v^2 + w^2} \cdot 24 \, dV \\ &= 24 \int_0^1 \int_0^{2\pi} \int_0^\pi \sqrt{\rho^2} \cdot \rho^2 \sin \phi \, d\phi \, d\theta \, d\rho. \\ &= 24 \int_0^1 \rho^3 \, d\rho \int_0^{2\pi} \, d\theta \int_0^\pi \sin \phi \, d\phi. \end{aligned}$$

9. Let E be the right circular cylinder bounded by the surfaces $x^2 + y^2 = 9$, $z = 1$, and $z = 5$. The velocity field $\mathbf{F} = 2x\mathbf{i} + 3y\mathbf{j} + 4z\mathbf{k}$ describes how a liquid flows outward through the permeable surface S of E equipped with an outward unit normal vector function \mathbf{n} . Distance is measured in ft and time in min. Do the following.

(a) Use Gauss's Divergence Theorem to evaluate $\iint_S \mathbf{F} \cdot \mathbf{n} \, dS$.

(b) Let S_1 and S_2 respectively be the top and bottom circular disks of E . Evaluate $\iint_{S_1} \mathbf{F} \cdot \mathbf{n} \, dS$ and $\iint_{S_2} \mathbf{F} \cdot \mathbf{n} \, dS$.

(c) Use the results in part (a) and (b) to find the flux of \mathbf{F} through S_3 , the part of S bounded by $x^2 + y^2 = 9$. Indicate units of measure, and explain what your answer means in terms of liquid flow.



(a)

$$\begin{aligned}
 \iint_S \mathbf{F} \cdot \mathbf{n} \, dS &= \iiint_E \nabla \cdot \mathbf{F} \, dV \\
 &= \iiint_E \left(\frac{\partial}{\partial x}(2x) + \frac{\partial}{\partial y}(3y) + \frac{\partial}{\partial z}(4z) \right) \, dV \\
 &= \iiint_E 9 \, dV = 9 \iiint_E 1 \, dV = 9 \cdot \text{Volume}(E) \\
 &= 9 \cdot \pi(3)^2 \cdot 4 \\
 &= 324\pi.
 \end{aligned}$$

(b)

The domain for S , S_1 , and S_2 is D , which is a circle centered at the origin with a radius of 3. The surface S_1 has equation $g_1(x, y) = 5$, for which $\frac{\partial g_1}{\partial x} = 0$ and $\frac{\partial g_1}{\partial y} = 0$. The pre-unit normal vector to S_1 is given by

$$\mathbf{N} = -\frac{\partial g_1}{\partial x}\mathbf{i} - \frac{\partial g_1}{\partial y}\mathbf{j} + \mathbf{k} = 0\mathbf{i} + 0\mathbf{j} + 1\mathbf{k}.$$

Therefore,

$$\begin{aligned}
\iint_{S_1} \mathbf{F} \cdot \mathbf{n} \, dS &= \iint_D \mathbf{F} \cdot \mathbf{N} \, dA \\
&= \iint_{S_1} (2x\mathbf{i} + 3y\mathbf{j} + 4z\mathbf{k}) \cdot (0\mathbf{i} + 0\mathbf{j} + 1\mathbf{k}) \, dA \\
&= \iint_D 4z \, dA = \iint_D 4 \cdot 5 \, dA = 20 \iint_D 1 \, dA \\
&= 36 \cdot \text{Area}(D) = 20\pi \cdot 3^2 = 180\pi.
\end{aligned}$$

Likewise, the surface S_2 has equation $g_2(x, y) = 1$, for which $\frac{\partial g_2}{\partial x} = 0$ and $\frac{\partial g_2}{\partial y} = 0$. The pre-unit normal vector to S_2 is given by

$$\mathbf{N} = \frac{\partial g_1}{\partial x}\mathbf{i} + \frac{\partial g_1}{\partial y}\mathbf{j} - \mathbf{k} = 0\mathbf{i} + 0\mathbf{j} - 1\mathbf{k}.$$

Therefore,

$$\begin{aligned}
\iint_{S_1} \mathbf{F} \cdot \mathbf{n} \, dS &= \iint_D \mathbf{F} \cdot \mathbf{N} \, dA \\
&= \iint_{S_2} (2x\mathbf{i} + 3y\mathbf{j} + 4z\mathbf{k}) \cdot (0\mathbf{i} + 0\mathbf{j} - 1\mathbf{k}) \, dA \\
&= \iint_D -4z \, dA = \iint_D -4 \cdot 1 \, dA = 36 \iint_D 1 \, dA \\
&= -4 \cdot \text{Area}(D) = -4\pi \cdot 3^2 = -36\pi.
\end{aligned}$$

(c)

By the additivity property for surface integrals,

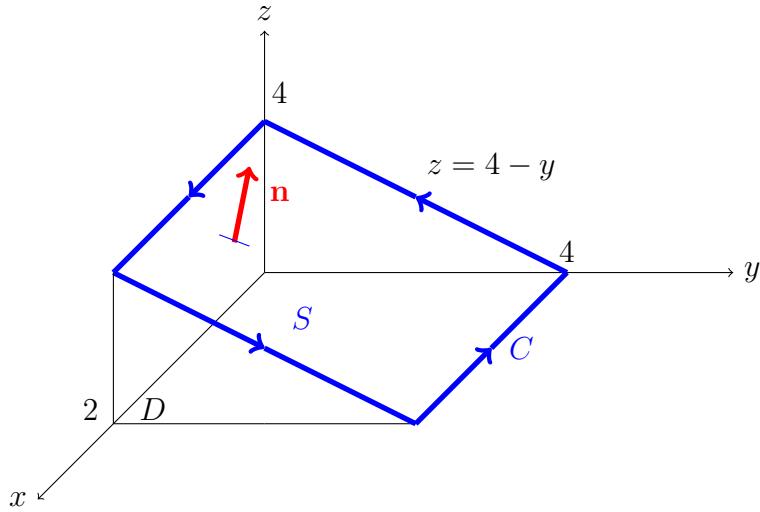
$$\begin{aligned}
\iint_{S_1} \mathbf{F} \cdot \mathbf{n} \, dS + \iint_{S_2} \mathbf{F} \cdot \mathbf{n} \, dS + \iint_{S_3} \mathbf{F} \cdot \mathbf{n} \, dS &= \iint_S \mathbf{F} \cdot \mathbf{n} \, dS \\
180\pi - 36\pi + \iint_{S_3} \mathbf{F} \cdot \mathbf{n} \, dS &= 324\pi \\
\iint_{S_3} \mathbf{F} \cdot \mathbf{n} \, dS &= 180\pi.
\end{aligned}$$

The flux through S_3 is $180 \frac{\text{ft}^3}{\text{min}}$, which means that in 1 minute $180\pi \text{ ft}^3$ of liquid permeates through S_3 .

10. Let S be the rectangle which is the part of the plane $y + z = 4$ that has vertices at $(2, 4, 0)$, $(0, 4, 0)$, $(0, 0, 4)$ and $(2, 0, 4)$ with boundary C . Let the force field $\mathbf{F} = 4y\mathbf{i} + 6x\mathbf{j} - 3xz\mathbf{k}$. Do the following.

(a) Show that $\nabla \times \mathbf{F} = 3z\mathbf{j} + 2\mathbf{k}$.

(b) State the equation for Stokes' Theorem and use it to set up a simplified, iterated double integral that equals the work done by \mathbf{F} in moving a particle counter-clockwise around C . Do not evaluate.



(a)

For the force field $\mathbf{F} = 4y\mathbf{i} + 6x\mathbf{j} - 3xz\mathbf{k}$, we have that

$$\begin{aligned} \nabla \times \mathbf{F} &= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 4y & 6x & -3xz \end{vmatrix} \\ &= \mathbf{i} \begin{vmatrix} \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 6x & -3xz \end{vmatrix} - \mathbf{j} \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\ 4y & -3xz \end{vmatrix} + \mathbf{k} \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ 4y & 6x \end{vmatrix} \\ &= \mathbf{i}(0 - 0) - \mathbf{j}(-3z - 0) + \mathbf{k}(6 - 4) \\ &= 0\mathbf{i} + 3z\mathbf{j} + 2\mathbf{k}. \end{aligned}$$

(b)

Denote the equation for the surface S by $g(x, y) = 4 - y$. Note that the domain D of S is given by $D = \{(x, y) \mid 0 \leq x \leq 4, 0 \leq y \leq 2\}$. By the right hand thumb rule, since C is oriented counter-clockwise, the unit normal vector \mathbf{n} to S has an upward \mathbf{k} component. Therefore, the associated pre-unit normal vector to S is

$$\mathbf{N} = -\frac{\partial g}{\partial x}\mathbf{i} - \frac{\partial g}{\partial y}\mathbf{j} + \mathbf{k} = 0\mathbf{i} + 1\mathbf{j} + 1\mathbf{k}.$$

Therefore, by applying Stokes' Theorem, the work done by \mathbf{F} in moving a particle counter-clockwise is

$$\begin{aligned}
 \text{Work} &= \int_C \mathbf{F} \cdot d\mathbf{r} = \iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS = \iint_D (\nabla \times \mathbf{F}) \cdot \mathbf{N} \, dA \\
 &= \int_0^4 \int_0^2 (0\mathbf{i} + 3z\mathbf{j} + 2\mathbf{k}) \cdot (0\mathbf{i} + 1\mathbf{j} + 1\mathbf{k}) \, dy \, dx = \int_0^2 \int_0^4 (3z + 2) \, dy \, dx \\
 &= \int_0^2 \int_0^4 (3(4 - y) + 2) \, dx \, dy = \int_0^4 \int_0^2 (14 - 3y) \, dy \, dx.
 \end{aligned}$$