
Calculus III Final Exam Form A Solution Key
Fall 2025

1. A particle traveling in a circle has velocity function v(t) = 3 sin ti+ 3 cos tj with
initial position r(0) = 3j− 3k.

(a) Find the position function r(t) for this particle.

(b) Find the distance traveled by this particle over 0 ≤ t ≤ π
2
.

(a) r′(t) = 3 sin ti+ 3 cos tj, r(0) = 3j− 3k.∫
r′(t)dt =

∫
(3 sin ti+ 3 cos tj)dt

r(t) = −3 cos ti+ 3 sin tj+ c

r(0) = −3 cos(0)i+ 3 sin(0)j+ c

3j− 3k = −3i+ c

3i+ 3j− 3k = c.

Therefore, r(t) = (−3 cos t+ 3)i+ (3 sin t+ 3)j− 3k.

(b)

TD =

∫ π
2

0

∣∣v(t)∣∣dt = ∫ π
2

0

√
(3 sin t)2 + (3 cos t)2 dt

=

∫ π
2

0

√
9(sin2 t+ cos2 t)dt =

∫ π
2

0

3 dt =
[
3t]

π
2
0 = 3π

2
.

2. Do the following, where z = f(x, y) where x = r cos 2θ, y = r sin 2θ.

(a) Using limit notation, write what it means for the function fy to be
continuous at the point (a, b).

(b) Find ∂z
∂r

and ∂z
∂θ

if fx and fy are continuous.

(c) Show that y = r sin 2θ is a solution to the partial differential equation
4(yr)

2 + (yθr)
2 + 4(yrθ)

2 + (yrθθ)
2 = 20.

(a) The function fy is continuous at the point (a, b) means that:

(i) fy(a, b) exists

(ii) lim
(x,y)→(a,b)

fy(x, y) exists

(iii) lim
(x,y)→(a,b)

fy(x, y) = fy(a, b).
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(b)
z

x y

r θ r θ

∂z

∂r
=

∂z

∂x
· ∂x
∂r

+
∂z

∂y
· ∂y
∂r

= fx(x, y) cos 2θ + fy(x, y) sin 2θ.

∂z

∂θ
=

∂z

∂x
· ∂x
∂θ

+
∂z

∂y
· ∂y
∂θ

= −2fx(x, y)r sin 2θ + 2 fy(x, y)r cos 2θ.

(c)
yr = sin 2θ , yrθ = 2 cos 2θ , yθr = 2 cos 2θ , yrθθ = −4 sin 2θ

4(yr)
2 + (yθr)

2 + 4(yrθ)
2 + (yrθθ)

2 = 4 sin2 2θ + 4 · 4cos22θ + 4 cos2 2θ + 16 sin2 2θ

= 4(sin2 2θ + cos2 2θ) + 16(cos2 2θ + sin2 2θ)

= 4 · 1 + 16 · 1 = 20.

3. Let f(x, y) = xy + ex+3y denote the temperature of a circular disk in ◦F. Assume
distance is measured in feet.

(a) Find the equation of the tangent plane to z = f(x, y) at (−3, 1).

(b) Find Duf(−3, 1) in the direction of (1, 4), indicate units of measure, and
explain what Duf(−3, 1) means.

(a)
fx = y + ex+3y , fy = x+ 3ex+3y; so therefore
f(−3, 1) = −2, fx(−3, 1) = 2, fy(−3, 1) = 0. The equation of the tangent plane
is therefore

z = f(−3, 1) + fx(−3, 1)(x+ 3) + fy(−3, 1)(y − 1)

= −2 + 2(x+ 3) + 0(y − 1)

z = 2x+ 4.

(b)
v = ⟨1, 4⟩ − ⟨−3, 1⟩ = ⟨4, 3⟩. |v| =

√
42 + 32 = 5 and ∇f(−3, 1) = ⟨2, 0⟩.

Therefore u = ⟨4
5
, 3
5
⟩ and so

Duf(−3, 1) = ∇f(−3, 1) · u = ⟨2, 0⟩ · ⟨4
5
, 3
5
⟩ = 8

5

◦F
ft
. (1)

The answer in (4) means that the temperature of the circular disk will increase by
8◦F over a 5ft increase in the direction of v from the point (−3, 1).
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4. The plane z = 2x+ 8y intersects the cylinder x2 + y2 = 17 in an ellipse.
Find the maximum and minimum perpendicular distances from this ellipse to
the xy-plane.

The goal is to optimize f(x, y) = 2x+ 8y subject to the constraint
g(x, y) = 17 where g(x, y) = x2 + y2. By the method of Lagrange
multipliers, we have that

∇f(x, y) = λ∇g(x, y)

fx(x, y)i+ fy(x, y)j = λgx(x, y)i+ λgy(x, y)j,

which implies that

fx(x, y) = λgx(x, y) fy(x, y) = λgy(x, y)

2 = λ · 2x 8 = λ · 2y
1

λ
= x

4

λ
= y (2)

By substitution into g(x, y) = 17 we obtain that

x2 + y2 = 17

1

λ2
+

16

λ2
= 17

λ2 = 1

By substitution into (5) the two possibilities λ = 1 , λ = −1 respectively
correspond to the points (−1,−4) and (1, 4) on the circle x2 + y2 = 17.
Thus the maximum and minimum values of f(x, y) subject to g(x, y) = 17
are f(−1,−4) = −34 and f(1, 4) = 34. This means that the points on the
ellipse that are the greatest distance from the xy-plane are (−1,−4,−34)
and (1, 4, 34), and so 34 is the maximum distance from the ellipse to the
xy-plane.

Since f(x, y) is continuous over the domain {(x, y) | g(x, y) = 17} and
f(−1,−4) = −34 < 0 < 34 = f(1, 4) the Intermediate Value Theorem
implies that there is at least one point on the ellipse where f(x, y) = 0; and
hence the minimum distance from the ellipse to the xy-plane is zero. To find
where this occurs, set

f(x, y) = 2x+ 8y = 0 , which implies that

x = −4y , and so by substitution into g(x, y) = 17

(−4y)2 + y2 = 17 ⇒
y = ±1 , x = ∓4

Therefore, the minimum distance of zero from the ellipse to the xy-plane
occurs at the two points (−4, 1, 0) and (4,−1, 0).
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5. Let D be the triangular region in the xy-plane with vertices at
(0, 0, 0), (2, 2, 0), and (4, 0, 0), which is bounded by y = x, x+ y = 4 and
y = 0. Do the following.

(a) Show that

∫∫
D

y dA = 8
3
by evaluating this integral.

(b) Describe a solid which the integral in (a) represents the volume of.

(c) If C is the boundary of D oriented counter-clockwise, use Green’s
Theorem and your answer in part (a) to evaluate the line integral∫
C

x2 dx + xy dy.

(d) Let −C be the traversal of C in a clockwise direction. Use your answer
in (c) to set up and state the value of a line integral over −C that
equals the work done by F = x2i+ xyj in moving a particle along −C
(in a clock-wise direction).

y

x
0 2 4

2

y = x x = 4− y
y →

D

(a)
As a type II region, we can express the domain of integration as
D = {(x, y) | 0 ≤ y ≤ 2 , y ≤ x ≤ 4− y}. Using the limits prescribed by
this type II region, we can compute the required double integral as follows :

∫∫
D

y dA =

2∫
0

4−y∫
y

y dx dy =

2∫
0

[
xy

]x=4−y

x=y
dy

=

2∫
0

(
y(4− y)− y2

)
dy =

2∫
0

(4y − 2y2) dy

=
[
2y2 − 2

3
y3
]y=2

y=0

= 8
3
.

(b)
The integral in (a) can represent a solid which lies above D and is bounded
above by the plane z = y.
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(c)
y

x
D

C

Since the conditions for Green’s Theorem are satisfied, we can use the answer
in (a) to compute the line integral around C, the boundary of D, as follows.∫

C

x2 dx+ xy dy =

∫
C

P dx+Q dy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA

=

∫∫
D

(
∂

∂x
(xy)− ∂

∂y
(x2)

)
dA =

∫∫
D

y dA = 8
3
.

(d)
By making the identification F = x2i+ xyj = P (x, y)i+Q(x, y)j, we can
express the line integral over −C in terms of the line integral over C in part
(c), enabling us to compute∫

−C

F · dr = −
∫
C

F · dr = −
∫
C

x2 dx+ xy dy = −8
3
.

6. Find the area of the part of the paraboloid z = 9− x2 − y2 that lies above
the xy-plane.

y

z

x

3

3

z = 9− x2 − y2

D

To determine the boundary of the domain D for this part of the paraboloid,
set 9− x2 − y2 = 0, which is the circle x2 + y2 = 9. In rectangular and polar
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coordinates, we may respectively represent D as

D = {(x, y) | x2 + y2 ≤ 9} = {(r, θ) | 0 ≤ r ≤ 3 , 0 ≤ θ ≤ 2π}.

Denote the paraboloid as g(x, y) = 9− x2 − y2, and compute the surface
area by using the appropriate formula as follows by switching to polar
coordinates and using the separability property since the resulting integrand
is separable (as a function of r only).

SA =

∫∫
D

√
1 +

(
∂g

∂x

)2

+

(
∂g

∂y

)2

dA =

∫∫
D

√
1 + 4(x2 + y2) dA

=

∫ 2π

0

∫ 3

0

√
1 + 4r2 · r drdθ =

∫ 2π

0

dθ

∫ 3

0

√
1 + 4r2 · r dr

(3)

To evaluate the integral in r, use the substitution u = 4r2 + 1, which implies
that 1

8
du = rdr, u(0) = 1, and u(3) = 37. We then obtain that∫ 3

0

√
1 + 4r2 · r dr = 1

8

∫ 37

1

√
u du =

[
1
8
· 2
3
u
3
2

]u=37

u=1

= 1
12

(
37
√
37− 1

)
.

By direct computation,

∫ 2π

0

dθ = 2π. Upon substituting back into (6) we

obtain that
SA = 2π · 1

12

(
37
√
37− 1

)
= π

6

(
37
√
37− 1

)
.

7. Let E be the solid which is under the parabolic cylinder z = x2 and above
the region D = {(x, y, 0) | 0 ≤ y ≤ 3, 1

3
y ≤ x ≤ 1}. Do the following.

(a) Simplify

∫∫∫
E

cos z dV into an iterated double integral.

(b) Switch the order of the integration in the double integral obtained in part
(a), and simplify it into a single integral with limits. Do not evaluate.

(a) To switch the order of integration in the double integral in (b), we need
to reconsider the given type I region D as a type II region.

y

x

y

x
0 1

3

0 1

3

D D

x = y
3 x = 1

y →

y = 3x

y = 0

↑

As a type II region, D = {(x, y) | 0 ≤ x ≤ 1 , 0 ≤ y ≤ 3x}.
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We can thus simplify the given triple integral into a single integral as
required in parts (a) and (b) :

∫∫∫
D

cos z dV =

∫∫
D

x2∫
0

cos z dz dA =

∫∫
D

[
sin z]z=x2

z=0 dA

=

3∫
0

∫ 1

y
3

sin x2 dxdy =

1∫
0

3x∫
0

sin x2 dydx

=

1∫
0

[
y sinx2

]y=3x

y=0
dx =

1∫
0

3x sinx2 dx.

8. Let E1 be the solid bounded by the ellipsoid x2

9
+ y2

4
+ z2

25
= 1. Do the

following.

(a) Show that the substitution x = 3u, y = 2v, and z = 5w transforms E1

into a solid E2 which is bounded by the unit sphere centered at the
origin.

(b) Compute the Jacobian ∂(x,y,z)
∂(u,v,w)

of this change in variables.

(c) Use the Change in Variables Theorem to rewrite the following triple
integral over E1 as a triple integral over E2 in terms of u, v, and w.∫∫∫
E1

√
x2

9
+ y2

4
+ z2

25
dV

(d) Rewrite the triple integral over E2 obtained in part (c) as a product of
three single integrals with limits by first changing the integral over E2 to
spherical coordinates. Do not evaluate.

(a)

y

z

x

E1

v

w

u

11

E2

By direct substitution, the ellipsoid becomes (3u)2

9
+ (2v)2

4
+ (5w)2

25
= 1, which

simplifies to u2 + v2 + w2 = 1.
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(b)

∂(x, y, z)

∂(u, v, w)
=

∣∣∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
3 0 0

0 2 0

0 0 5

∣∣∣∣∣∣ = 3 · 2 · 5 = 30.

(c), (d)
Note that in terms of spherical coordinates,
E2 = {(ρ, θ, ϕ) | 0 ≤ ρ ≤ 1 , 0 ≤ θ ≤ 2π , 0 ≤ ϕ ≤ π}.
By applying the Change in Variables Theorem twice; first to change the
domain of the original integral from E1 to E2, and second to rewrite the
integral over E2 using spherical coordinates, we obtain the following.∫∫∫

E1

√
x2

9
+ y2

4
+ z2

25
dV =

∫∫∫
E2

√
(3u)2

9
+ (2v)2

4
+ (5w)2

25
·
∣∣∣∣ ∂(x,y,z)∂(u,v,w)

∣∣∣∣dV
=

∫∫∫
E2

√
u2 + v2 + w2 · 30 dV

= 30

1∫
0

2π∫
0

π∫
0

√
ρ2 · ρ2 sinϕ dϕ dθ dρ.

= 30

1∫
0

ρ3dρ

2π∫
0

dθ

π∫
0

sinϕ dϕ.

9. Let E be the right circular cylinder bounded by the surfaces x2 + y2 = 4,
z = 3, and z = 9. The velocity field F = 3xi+ 2yj+ 4zk describes how a
liquid flows outward through the permeable surface S of E equipped with an
outward unit normal vector function n. Distance is measured in ft and time
in min. Do the following.

(a) Use Gauss’s Divergence Theorem to evaluate

∫∫
S

F · n dS.

(b) Let S1 and S2 respectively be the top and bottom circular disks of E.

Evaluate

∫∫
S1

F · n dS and

∫∫
S2

F · n dS.

(c) Use the results in part (a) and (b) to find the flux of F through S3, the
part of S bounded by x2 + y2 = 4. Indicate units of measure, and
explain what your answer means in terms of liquid flow.
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y

z

x

3

9

D

nn

nn

n n

2

2

S3

S1

S2

(a) ∫∫
S

F · n dS =

∫∫∫
E

∇ · F dV

=

∫∫∫
E

(
∂

∂x
(3x) +

∂

∂y
(2y) +

∂

∂z
(4z)

)
dV

=

∫∫∫
E

9 dV = 9

∫∫∫
E

1 dV = 9 · Volume(E)

= 9 · π(2)2 · 6
= 216π.

(b)
The domain for S, S1, and S2 is D, which is a circle centered at the origin
with a radius of 2. The surface S1 has equation g1(x, y) = 9, for which
∂g1
∂x

= 0 and ∂g1
∂y

= 0. The pre-unit normal vector to S1 is given by

N = −∂g1
∂x

i− ∂g1
∂y

j+ k = 0i+ 0j+ 1k.
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Therefore,∫∫
S1

F · n dS =

∫∫
D

F ·N dA

=

∫∫
S1

(3xi+ 2yj+ 4zk) · (0i+ 0j+ 1k)dA

=

∫∫
D

4z dA =

∫∫
D

4 · 9 dA = 36

∫∫
D

1 dA

= 36 · Area(D) = 36π · 22 = 144π.

Likewise, the surface S2 has equation g2(x, y) = 3, for which ∂g2
∂x

= 0 and
∂g2
∂y

= 0. The pre-unit normal vector to S2 is given by

N =
∂g1
∂x

i+
∂g1
∂y

j− k = 0i+ 0j− 1k.

Therefore,∫∫
S1

F · n dS =

∫∫
D

F ·N dA

=

∫∫
S2

(3xi+ 2yj+ 4zk) · (0i+ 0j− 1k)dA

=

∫∫
D

−4z dA =

∫∫
D

−4 · 3 dA = 36

∫∫
D

1 dA

= −12 · Area(D) = −12π · 22 = −48π.

(c)
By the additivity property for surface integrals,∫∫

S1

F · n dS +

∫∫
S2

F · n dS +

∫∫
S3

F · n dS =

∫∫
S

F · n dS

144π − 48π +

∫∫
S3

F · n dS = 216π

∫∫
S3

F · n dS = 120π.

The flux through S3 is 120 ft3

min
, which means that in 1 minute 120π ft3 of

liquid permeates through S3.
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10. Let S be the rectangle which is the part of the plane y + z = 2 that has
vertices at (4, 2, 0), (0, 2, 0), (0, 0, 2) and (4, 0, 2) with boundary C. Let the
force field F = 2yi+ 8xj− 5xzk. Do the following.

(a) Show that ∇× F = 5zj+ 6k.

(b) State the equation for Stokes’ Theorem and use it to set up a simplified,
iterated double integral that equals the work done by F in moving a
particle counter-clockwise around C. Do not evaluate.

y

z

x

n

4

2

2

C
S

z = 2− y

D

(a)
For the force field F = 2yi+ 8xj− 5xzk, we have that

∇× F =

∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

2y 8x −5xz

∣∣∣∣∣∣∣
= i

∣∣∣∣∣ ∂
∂y

∂
∂z

8x −5xz

∣∣∣∣∣− j

∣∣∣∣ ∂
∂x

∂
∂z

2y −5xz

∣∣∣∣+ k

∣∣∣∣∣ ∂
∂x

∂
∂y

2y 8x

∣∣∣∣∣
= i(0− 0)− j(−5z − 0) + k(8− 2)

= 0i+ 5zj+ 6k.

(b)
Denote the equation for the surface S by g(x, y) = 2− y. Note that the
domain D of S is given by D = {(x, y) | 0 ≤ x ≤ 2 , 0 ≤ y ≤ 4}. By the
right hand thumb rule, since C is oriented counter-clockwise, the unit normal
vector n to S has an upward k component. Therefore, the associated
pre-unit normal vector to S is

N = −∂g

∂x
i− ∂g

∂y
j+ k = 0i+ 1j+ 1k.
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Therefore, by applying Stokes’ Theorem, the work done by F in moving a
particle counter-clockwise is

Work =

∫
C

F · dr =
∫∫
S

(
∇× F

)
· n dS =

∫∫
D

(
∇× F

)
·N dA

=

4∫
0

2∫
0

(
0i+ 5zj+ 6k

)
·
(
0i+ 1j+ 1k

)
dy dx =

4∫
0

2∫
0

(
5z + 6

)
dy dx

=

4∫
0

2∫
0

(
5(2− y) + 6

)
dxdy =

4∫
0

2∫
0

(
16− 5y

)
dydx.
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Calculus III Final Exam Form B Solution Key
Fall 2025

1. A particle traveling in a circle has velocity function v(t) = 2 cos ti+ 2 sin tj with
initial position r(0) = 2j+ 2k.

(a) Find the position function r(t) for this particle.

(b) Find the distance traveled by this particle over 0 ≤ t ≤ π
2
.

(a) r′(t) = 3 sin ti+ 3 cos tj, r(0) = 3j− 3k.∫
r′(t)dt =

∫
(2 cos ti+ 2 sin tj)dt

r(t) = 2 sin ti− 2 cos tj+ c

r(0) = 2 sin(0)i− 2 cos(0)j+ c

2j+ 2k = 0i− 2j+ c

4j+ 2k = c.

Therefore, r(t) = 2 sin ti+ (−2 cos t+ 4)j+ 2k.

(b)

TD =

∫ π
2

0

∣∣v(t)∣∣dt = ∫ π
2

0

√
(2 cos t)2 + (2 sin t)2 dt

=

∫ π
2

0

√
4(cos2 t+ sin2 t)dt =

∫ π
2

0

2 dt =
[
2t]

π
2
0 = π.

2. Do the following, where z = f(x, y) where x = r cos 3θ, y = r sin 3θ.

(a) Using limit notation, write what it means for the function fx to be
continuous at the point (a, b).

(b) Find ∂z
∂r

and ∂z
∂θ

if fx and fy are continuous.

(c) Show that y = r sin 2θ is a solution to the partial differential equation
9(xr)

2 + (xθr)
2 + 9(xrθ)

2 + (xrθθ)
2 = 90.

(a) The function fx is continuous at the point (a, b) means that:

(i) fx(a, b) exists

(ii) lim
(x,y)→(a,b)

fx(x, y) exists

(iii) lim
(x,y)→(a,b)

fx(x, y) = fy(a, b).
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(b)
z

x y

r θ r θ

∂z

∂r
=

∂z

∂x
· ∂x
∂r

+
∂z

∂y
· ∂y
∂r

= fx(x, y) cos 3θ + fy(x, y) sin 3θ.

∂z

∂θ
=

∂z

∂x
· ∂x
∂θ

+
∂z

∂y
· ∂y
∂θ

= −3fx(x, y)r sin 3θ + 3 fy(x, y)r cos 3θ.

(c)
xr = cos 3θ , xrθ = −3 sin 3θ , xθr = −3 sin 3θ , xrθθ = −9 cos 3θ

9(xr)
2 + (xθr)

2 + 9(xrθ)
2 + (xrθθ)

2 = 9 cos2 3θ + 9 · 9sin23θ + 9 sin2 3θ + 81 cos2 2θ

= 9(sin2 3θ + cos2 3θ) + 81(sin2 3θ + cos2 3θ)

= 9 · 1 + 81 · 1 = 90.

3. Let f(x, y) = xy + e2x+y denote the temperature of a circular disk in ◦F. Assume
distance is measured in feet.

(a) Find the equation of the tangent plane to z = f(x, y) at (−1, 2).

(b) Find Duf(−1, 2) in the direction of (3, 5), indicate units of measure, and
explain what Duf(−1, 2) means.

(a)
fx = y + 2e2x+y , fy = x+ e2x+y; so therefore
f(−1, 2) = −1, fx(−1, 2) = 4, fy(−1, 2) = 0. The equation of the tangent plane
is therefore

z = f(−1, 2) + fx(−1, 2)(x+ 1) + fy(−1, 2)(y − 2)

= −1 + 4(x+ 1) + 0(y − 2)

z = 4x+ 3.

(b)
v = ⟨3, 5⟩ − ⟨−1, 2⟩ = ⟨4, 3⟩. |v| =

√
42 + 32 = 5 and ∇f(−1, 2) = ⟨4, 0⟩.

Therefore u = ⟨4
5
, 3
5
⟩ and so

Duf(−1, 2) = ∇f(−1, 2) · u = ⟨4, 0⟩ · ⟨4
5
, 3
5
⟩ = 16

5

◦F
ft
. (4)

The answer in (4) means that the temperature of the circular disk will increase by
16◦F over a 5ft increase in the direction of v from the point (−1, 2).
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4. The plane z = 4x+ 6y intersects the cylinder x2 + y2 = 13 in an ellipse.
Find the maximum and minimum perpendicular distances from this ellipse to
the xy-plane.

The goal is to optimize f(x, y) = 4x+ 6y subject to the constraint
g(x, y) = 13 where g(x, y) = x2 + y2. By the method of Lagrange
multipliers, we have that

∇f(x, y) = λ∇g(x, y)

fx(x, y)i+ fy(x, y)j = λgx(x, y)i+ λgy(x, y)j,

which implies that

fx(x, y) = λgx(x, y) fy(x, y) = λgy(x, y)

4 = λ · 2x 6 = λ · 2y
2

λ
= x

3

λ
= y (5)

By substitution into g(x, y) = 13 we obtain that

x2 + y2 = 13

4

λ2
+

9

λ2
= 13

λ2 = 1

By substitution into (5) the two possibilities λ = 1 , λ = −1 respectively
correspond to the points (−1,−4) and (1, 4) on the circle x2 + y2 = 17.
Thus the maximum and minimum values of f(x, y) subject to g(x, y) = 17
are f(−2,−3) = −26 and f(2, 3) = 26. This means that the points on the
ellipse that are the greatest distance from the xy-plane are (−2,−3,−26)
and (2, 3, 26), and so 26 is the maximum distance from the ellipse to the
xy-plane.

Since f(x, y) is continuous over the domain {(x, y) | g(x, y) = 13} and
f(−2,−3) = −26 < 0 < 26 = f(2, 3) the Intermediate Value Theorem
implies that there is at least one point on the ellipse where f(x, y) = 0; and
hence the minimum distance from the ellipse to the xy-plane is zero. To find
where this occurs, set

f(x, y) = 4x+ 6y = 0 , which implies that

x = −3
2
y , and so by substitution into g(x, y) = 13

(−3
2
y)2 + y2 = 17 ⇒

y = ±2 , x = ∓3

Therefore, the minimum distance of zero from the ellipse to the xy-plane
occurs at the two points (−3, 2, 0) and (3,−2, 0).
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5. Let D be the triangular region in the xy-plane with vertices at
(0, 0, 0), (1, 1, 0), and (2, 0, 0), which is bounded by y = x, x+ y = 2 and
y = 0. Do the following.

(a) Show that

∫∫
D

y dA = 1
3
by evaluating this integral.

(b) Describe a solid which the integral in (a) represents the volume of.

(c) If C is the boundary of D oriented counter-clockwise, use Green’s
Theorem and your answer in part (a) to evaluate the line integral∫
C

x dx + xy dy.

(d) Let −C be the traversal of C in a clockwise direction. Use your answer
in (c) to set up and state the value of a line integral over −C that
equals the work done by F = x2i+ xyj in moving a particle along −C
(in a clock-wise direction).

y

x
0 1 2

1

y = x x = 2− y
y →

D

(a)
As a type II region, we can express the domain of integration as
D = {(x, y) | 0 ≤ y ≤ 1 , y ≤ x ≤ 2− y}. Using the limits prescribed by
this type II region, we can compute the required double integral as follows :

∫∫
D

y dA =

1∫
0

2−y∫
y

y dx dy =

1∫
0

[
xy

]x=2−y

x=y
dy

=

1∫
0

(
y(2− y)− y2

)
dy =

1∫
0

(2y − 2y2) dy

=
[
y2 − 2

3
y3
]y=1

y=0

= 1
3
.

(b)
The integral in (a) can represent a solid which lies above D and is bounded
above by the plane z = y.
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(c)
y

x
D

C

Since the conditions for Green’s Theorem are satisfied, we can use the answer
in (a) to compute the line integral around C, the boundary of D, as follows.∫

C

x dx+ xy dy =

∫
C

P dx+Q dy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA

=

∫∫
D

(
∂

∂x
(xy)− ∂

∂y
(x)

)
dA =

∫∫
D

y dA = 1
3
.

(d)
By making the identification F = xi+ xyj = P (x, y)i+Q(x, y)j, we can
express the line integral over −C in terms of the line integral over C in part
(c), enabling us to compute∫

−C

F · dr = −
∫
C

F · dr = −
∫
C

x dx+ xy dy = −1
3
.

6. Find the area of the part of the paraboloid z = 4− x2 − y2 that lies above
the xy-plane.

y

z

x

2

2

z = 4− x2 − y2

D

To determine the boundary of the domain D for this part of the paraboloid,
set 4− x2 − y2 = 0, which is the circle x2 + y2 = 4. In rectangular and polar

17



coordinates, we may respectively represent D as

D = {(x, y) | x2 + y2 ≤ 4} = {(r, θ) | 0 ≤ r ≤ 2 , 0 ≤ θ ≤ 2π}.

Denote the paraboloid as g(x, y) = 4− x2 − y2, and compute the surface
area by using the appropriate formula as follows by switching to polar
coordinates and using the separability property since the resulting integrand
is separable (as a function of r only).

SA =

∫∫
D

√
1 +

(
∂g

∂x

)2

+

(
∂g

∂y

)2

dA =

∫∫
D

√
1 + 4(x2 + y2) dA

=

∫ 2π

0

∫ 2

0

√
1 + 4r2 · r drdθ =

∫ 2π

0

dθ

∫ 2

0

√
1 + 4r2 · r dr

(6)

To evaluate the integral in r, use the substitution u = 4r2 + 1, which implies
that 1

8
du = rdr, u(0) = 1, and u(3) = 17. We then obtain that∫ 2

0

√
1 + 4r2 · r dr = 1

8

∫ 17

1

√
u du =

[
1
8
· 2
3
u
3
2

]u=17

u=1

= 1
12

(
17
√
17− 1

)
.

By direct computation,

∫ 2π

0

dθ = 2π. Upon substituting back into (6) we

obtain that
SA = 2π · 1

12

(
17
√
17− 1

)
= π

6

(
17
√
17− 1

)
.

7. Let E be the solid which is under the parabolic cylinder z = x2 and above
the region D = {(x, y, 0) | 0 ≤ y ≤ 2, 1

2
y ≤ x ≤ 1}. Do the following.

(a) Simplify

∫∫∫
E

cos z dV into an iterated double integral.

(b) Switch the order of the integration in the double integral obtained in part
(a), and simplify it into a single integral with limits. Do not evaluate.

(a) To switch the order of integration in the double integral in (b), we need
to reconsider the given type I region D as a type II region.

y

x

y

x
0 1

2

0 1

2

D D

x = y
2 x = 1

y →

y = 2x

y = 0

↑

As a type II region, D = {(x, y) | 0 ≤ x ≤ 1 , 0 ≤ y ≤ 2x}.

18



We can thus simplify the given triple integral into a single integral as
required in parts (a) and (b) :

∫∫∫
D

cos z dV =

∫∫
D

x2∫
0

cos z dz dA =

∫∫
D

[
sin z]z=x2

z=0 dA

=

2∫
0

∫ 1

y
2

sin x2 dxdy =

1∫
0

2x∫
0

sin x2 dydx

=

1∫
0

[
y sinx2

]y=2x

y=0
dx =

1∫
0

2x sinx2 dx.

8. Let E1 be the solid bounded by the ellipsoid x2

4
+ y2

9
+ z2

16
= 1. Do the

following.

(a) Show that the substitution x = 2u, y = 3v, and z = 4w transforms E1

into a solid E2 which is bounded by the unit sphere centered at the
origin.

(b) Compute the Jacobian ∂(x,y,z)
∂(u,v,w)

of this change in variables.

(c) Use the Change in Variables Theorem to rewrite the following triple
integral over E1 as a triple integral over E2 in terms of u, v, and w.∫∫∫
E1

√
x2

4
+ y2

9
+ z2

16
dV

(d) Rewrite the triple integral over E2 obtained in part (c) as a product of
three single integrals with limits by first changing the integral over E2 to
spherical coordinates. Do not evaluate.

(a)

y

z

x

E1

v

w

u

11

E2

By direct substitution, the ellipsoid becomes (2u)2

4
+ (3v)2

9
+ (4w)2

16
= 1, which

simplifies to u2 + v2 + w2 = 1.

19



(b)

∂(x, y, z)

∂(u, v, w)
=

∣∣∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
2 0 0

0 3 0

0 0 4

∣∣∣∣∣∣ = 2 · 3 · 4 = 24.

(c), (d)
Note that in terms of spherical coordinates,
E2 = {(ρ, θ, ϕ) | 0 ≤ ρ ≤ 1 , 0 ≤ θ ≤ 2π , 0 ≤ ϕ ≤ π}.
By applying the Change in Variables Theorem twice; first to change the
domain of the original integral from E1 to E2, and second to rewrite the
integral over E2 using spherical coordinates, we obtain the following.∫∫∫

E1

√
x2

4
+ y2

9
+ z2

16
dV =

∫∫∫
E2

√
(3u)2

9
+ (2v)2

4
+ (5w)2

25
·
∣∣∣∣ ∂(x,y,z)∂(u,v,w)

∣∣∣∣dV
=

∫∫∫
E2

√
u2 + v2 + w2 · 24 dV

= 24

1∫
0

2π∫
0

π∫
0

√
ρ2 · ρ2 sinϕ dϕ dθ dρ.

= 24

1∫
0

ρ3dρ

2π∫
0

dθ

π∫
0

sinϕ dϕ.

9. Let E be the right circular cylinder bounded by the surfaces x2 + y2 = 9,
z = 1, and z = 5. The velocity field F = 2xi+ 3yj+ 4zk describes how a
liquid flows outward through the permeable surface S of E equipped with an
outward unit normal vector function n. Distance is measured in ft and time
in min. Do the following.

(a) Use Gauss’s Divergence Theorem to evaluate

∫∫
S

F · n dS.

(b) Let S1 and S2 respectively be the top and bottom circular disks of E.

Evaluate

∫∫
S1

F · n dS and

∫∫
S2

F · n dS.

(c) Use the results in part (a) and (b) to find the flux of F through S3, the
part of S bounded by x2 + y2 = 9. Indicate units of measure, and
explain what your answer means in terms of liquid flow.
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y

z

x

1

5

D

nn

nn

n n

3

3

S3

S1

S2

(a) ∫∫
S

F · n dS =

∫∫∫
E

∇ · F dV

=

∫∫∫
E

(
∂

∂x
(2x) +

∂

∂y
(3y) +

∂

∂z
(4z)

)
dV

=

∫∫∫
E

9 dV = 9

∫∫∫
E

1 dV = 9 · Volume(E)

= 9 · π(3)2 · 4
= 324π.

(b)
The domain for S, S1, and S2 is D, which is a circle centered at the origin
with a radius of 3. The surface S1 has equation g1(x, y) = 5, for which
∂g1
∂x

= 0 and ∂g1
∂y

= 0. The pre-unit normal vector to S1 is given by

N = −∂g1
∂x

i− ∂g1
∂y

j+ k = 0i+ 0j+ 1k.
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Therefore,∫∫
S1

F · n dS =

∫∫
D

F ·N dA

=

∫∫
S1

(2xi+ 3yj+ 4zk) · (0i+ 0j+ 1k)dA

=

∫∫
D

4z dA =

∫∫
D

4 · 5 dA = 20

∫∫
D

1 dA

= 36 · Area(D) = 20π · 32 = 180π.

Likewise, the surface S2 has equation g2(x, y) = 1, for which ∂g2
∂x

= 0 and
∂g2
∂y

= 0. The pre-unit normal vector to S2 is given by

N =
∂g1
∂x

i+
∂g1
∂y

j− k = 0i+ 0j− 1k.

Therefore,∫∫
S1

F · n dS =

∫∫
D

F ·N dA

=

∫∫
S2

(2xi+ 3yj+ 4zk) · (0i+ 0j− 1k)dA

=

∫∫
D

−4z dA =

∫∫
D

−4 · 1 dA = 36

∫∫
D

1 dA

= −4 · Area(D) = −4π · 32 = −36π.

(c)
By the additivity property for surface integrals,∫∫

S1

F · n dS +

∫∫
S2

F · n dS +

∫∫
S3

F · n dS =

∫∫
S

F · n dS

180π − 36π +

∫∫
S3

F · n dS = 324π

∫∫
S3

F · n dS = 180π.

The flux through S3 is 180 ft3

min
, which means that in 1 minute 180π ft3 of

liquid permeates through S3.
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10. Let S be the rectangle which is the part of the plane y + z = 4 that has
vertices at (2, 4, 0), (0, 4, 0), (0, 0, 4) and (2, 0, 4) with boundary C. Let the
force field F = 4yi+ 6xj− 3xzk. Do the following.

(a) Show that ∇× F = 3zj+ 2k.

(b) State the equation for Stokes’ Theorem and use it to set up a simplified,
iterated double integral that equals the work done by F in moving a
particle counter-clockwise around C. Do not evaluate.

y

z

x

n

2

4

4

C
S

z = 4− y

D

(a)
For the force field F = 4yi+ 6xj− 3xzk, we have that

∇× F =

∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

4y 6x −3xz

∣∣∣∣∣∣∣
= i

∣∣∣∣∣ ∂
∂y

∂
∂z

6x −3xz

∣∣∣∣∣− j

∣∣∣∣ ∂
∂x

∂
∂z

4y −3xz

∣∣∣∣+ k

∣∣∣∣∣ ∂
∂x

∂
∂y

4y 6x

∣∣∣∣∣
= i(0− 0)− j(−3z − 0) + k(6− 4)

= 0i+ 3zj+ 2k.

(b)
Denote the equation for the surface S by g(x, y) = 4− y. Note that the
domain D of S is given by D = {(x, y) | 0 ≤ x ≤ 4 , 0 ≤ y ≤ 2}. By the
right hand thumb rule, since C is oriented counter-clockwise, the unit normal
vector n to S has an upward k component. Therefore, the associated
pre-unit normal vector to S is

N = −∂g

∂x
i− ∂g

∂y
j+ k = 0i+ 1j+ 1k.
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Therefore, by applying Stokes’ Theorem, the work done by F in moving a
particle counter-clockwise is

Work =

∫
C

F · dr =
∫∫
S

(
∇× F

)
· n dS =

∫∫
D

(
∇× F

)
·N dA

=

4∫
0

2∫
0

(
0i+ 3zj+ 2k

)
·
(
0i+ 1j+ 1k

)
dy dx =

2∫
0

4∫
0

(
3z + 2

)
dy dx

=

2∫
0

4∫
0

(
3(4− y) + 2

)
dxdy =

4∫
0

2∫
0

(
14− 3y

)
dydx.
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